SPACE SCIENCES LABORATORY

UNPUBLISHED PREL I

2
w2
VINARY DATR %2

-t

W
0l

2,
=
-t
V-’
o
)

3

3

»,

'

EL

(R

A

=

4

57

|}

“’ -
w
Lo ?)‘.‘

%

w

UNIVERSITY

i CALIFORNIA
BERKELEY K

A LIFORNIA

- by
= 4 - T
oo QL
[N65 - 82346 !
¢
* (ACCESSION NUMBER) (THRWU)
1
[
x /s // %7@/
{PAGES) {CODE)
o
(NASA Cé ER TMX OR AD NUMBER)
L

(CATEGORY)

A UNIVERSAL ADAPTIVE CODE
FOR OPTIMIZATION
(GROPE)

by
Merrill M. Flood
and

Alberto leon

Internal Working Peper No. 19

August 1964

Space Sciences laboratory
University of California
Berkeley

This research was supported in pert by the Nationel Aeronautics and Space
Administration under al Grant #NSG-243-62 under the Univers
California.

INTRODUCTION

CONTENTS

o« o s o . . o o . o o

STRUCME OF GROP E - L] 1 4 . . - L] . - . - Ll . . v Ll . . *
MAIN PROGRAM . . . +. . v v v v o . . . 0 . .
I. Subroutine RW§§§ e e e e e s e

II. Subroutine RSDTA . e s e e e e

A. Subroutine RFMTS

III. The Executive Portion of the Program .

A. Overview . . e e e 4 e o o e o .
B. Subroutine ADAPT e e e o e e s s e o
C. Subroutine OPTIMU.
D. Some Comments on the Adaptive Process.
IV. Subroutine SNICON. . . « v ¢ « o« o o o o &

OPTIMIZING SUBROUTINES

I.
II.
III.
Iv.

SIMPLE RANDOM (RANDOM) .

SHRINKAGE RANDOM (SHRINK). . .

. e e o o o o o

. . . e

SATTERTHWAITE STRATEGY ISATI'ER)

PATTERN SEARCH STRATEGY (LOOK) .

. e s e
.
LI
* ¢ e @
e e o .

OPERATION OF GRCPE . . . « « « ¢« ¢ o & « &

Three Different Overlaying Structures. . . .

FLEXIBILITY AND LIMITATIONS. . .

REMARK .

. . . « o o . ¢ o

APPENDIX A. GLOSSARY OF PARAMETERS, VARIAELES AND
SUBROUTINE NAMES.

APPENDIX B. USE OF CONTROL PARAMETERS . .

APPENDIX C. FILOW

CHMS e o e @ LI Y e .

APPENDIX D. FORTRAN LISTIRGS.

APPENDIX E. OVERLAYING STRUCTURES

. o e o o LI] e o

. o . =

* e & »

. e .«

. e o e

Page

11
11
11
12
13
20
22
2k
2k

29
30

33

37

39
k2
L

46

53
56
67

105

!

INTRODUCTION

A UNIVERSAL ADAPTIVE CODE FOR OPTIMIZATION, for us, is a general
flexible computer program for numerical analysis which selects adaptively
and sequentially among a group of several optimizing subroutines as each
problem calculation progresses. The optimizing subroutines are selected and
controlled by the so~called executive part of the program. Bach optimizing
subroutine is selected probabilistically at each stage of the solution of
any one problem. The selection probabilities are based upon the past history
of each optimizing subroutine.

The task here, called the optimization process, is to locate a set
of values of a set of variables that yields the optimum value for & function
given algebraically. The function to be optimized may be constrained or
unconstrained.

The UNIVERSAL CODE (GROPE) is intended to serve three different
purposes in different and independent phases of the optimization process.

The first purpose is the efficient optimization of & given mathe-
matical function (the function to be optimized, either by minimization or
by maximization). Here the solution process will be accelerated by the
action of the optionel features present in each one of the optimizing sub-
routines. This combination of procedures is expected to yield a solution
more quickly than would be obtained by using any one of the subroutines
by itself.

The organization of the computing system is the second purpose.

It is only possible to have in core memory a limited number of optimizing

*

The initial steps toward a Universal Adaptive Code for Optimi-
zation (GROPE) were described in Internal Working Paper No. 11, Space
Sciences Laboratory, April 1964, by Alberto Leon.

subroutines at any one stage of the calculation, the number at any time
depending also upon their size. It is obviously desirable to have in high-
speed core memory those subroutines having the highest usage rate. Such
selection eliminates much of the swapping back and forth between higher and
lover speed memories within the configuration, thus considerably increasing
the computing system's efficiency.

The relative effectiveness of am optimizing subroutine depends
at least partially upon the properties of the mathematical function to be
optimized. It is expected that problems arising from & particulsx population
of users will have similar properties. There are situations in which it is
possible to identify a particular class of problems as currently predominant
emong the users. A third purpose is adaptive automatic selection of
currently effective subroutines, as indicated by recent users' experience.

We have selected a group of lterative optimizing subroutines to
build up the UNIVERSAL ADAPTIVE CODE. The iterative techniques selected
have certain similarities that make possible sequential comparisons among
them as to their current effectiveness, thus providing the essential basis
for adaptive selection among them during a calculation.

A linear stochastic learning model used for other purposes by one
of the authorsl provides the adaptive mechanism of the code. It is very
simple to use any other such adaptive mechanism for this portion of the
code, and several others will be tested under our present project; this
requires merely that subroutines ADAPT and RCPRO be rewritten so as to

represent the adaptive mechanism to be used.

ll?.].ood , Merrill M., "Stochastic Learning Theory Applied to Choice
Ehnﬁeriments with Rats, Doge and Men," Behavioral Science, 1962, 7, pp. 289-
314,

GROPE is available in FORTRAN IV for IBM 7090/T7094 computers
processed by the FORTRAN IV compiler, a 7090/7094% IBJOB Processor Component.
The code operates under the University of Californie (Berkeley) Executive
System. Some of the optimizing subroutines were translated from FORTRAN II
into FORTRAN IV using SIFT (Share Internal Fortran Translator) which
automatically translates a FORTRAN II source progrem (or subprogram) into
a FORTRAN IV source program.

The remainder of this paper is devoted to detailed descriptions
of various portions of the UNIVERSAL CODE. First & discussion of the
structure of the Main Program. The Main Progrem contains subroutines
which: (1) initialize the process, by identifying subroutines, parameters
and other pertinent informetion, (2) select optimizing subroutines for use
together with relevant information for the particular subroutine, (3) stop
the optimizing subroutine in use based upon stopping criteria, (4) evaluate
the optimizing subroutine's effectiveness, (5) modify the selection proba-
bilities for each optimizing subroutine based upon evaluated effectiveness,
and (6) stop the optimization process and provide the necessary print out.
The subroutines are explained in the order in which they appear for the
first time in the program. The Flow Charts in Appendix C should be helpful
in following the description.

Following the discussion of the general structure of the progranm
are descriptions and comments regarding specific optimizing subroutines used
in past operations and a description of the overlay feature for core storage
utilization. Finally some resulis of past operations are discussed together

with remarks about flexibility and limitations of the program.

STRUCTURE OF GROPE

A brief explanation of the structure of the URIVERSAL ADAPTIVE CODE,
hereafter called GROPE, is given in this section. Descriptions of the
subroutines are also given here together with some of the most important
variables. The names chosen for the subroutines and variables are mnemonics,
to help make the description easier to follow and remember.

A simplified Flow Chart of GROPE is included in Appendix C. Complete
FORTRAN IV listings and a sample of data are given in Appendix D.

The general code, &8s it is now, has some subroutines that the user
must write and compile in order to treat his particular optimization problems.
However, a separate run is needed for each problem if he has different opti-
mization functions to treat. In the description of subroutines that follows,

this feature will be clarified.

MATN PROGRAM

The MAIN program is just a sequence of calls to the proper sub-
routines. MAIN includes also the initialization of certain control queantities,
the clock readings for control purposes, and the printing of the final
output. One control kei* (KR8), read in as data, controls the number of
problems to be run and another one the amount of information to be printed

as final output.

*
A description of the effect of each control key may be found
in Appendix B.

The final output includes:

8. Identification of the problenm.

b. Best functional value (PFHAX), together with the optimizing
vector (PBESV(J)).* In cases of linear problems (i.e., linear
programming problems or systems of linear equations) the vector
of residuals (TEMPE(J)) is also a part of the final output.

c. Number of the trial** at which the optimum point was reached
(IBEST) as well as the number of the optimizing subroutine
(IROUT) in use at that time.

d. Total number of calls to optimizing subroutines (NLOOK) and
distribution of these calls among the different subroutines
(1sm(1)).

e. Total elapsed time for each problem (NTIME) and total number
of functional evaluations (NEL1).

f. Total time spent by each optimizing subroutine (NT(I)) in
each independent problem.

g. Vector to initialize the random number generator.

Whenever KR 14 is set greater than zero the following additional

information is printed: |

h. The final state (vector of probabilities) of the adaptive
mechanism represented in ADAPT (PROB(I)).

i. The vector with the number of the optimizing subroutine used

in each trial (JRES(L)).

*We use consistently the following subscripts as mmemonics: I, it
ranges from 1 to the available number of codes (NCODS); J, it ranges from 1 to
the total number of variebles (N); L, it ranges from 1 to the total number of
trials (MXTRI).

**Our definition of trial is given in the description of sub-
routine ADAPT.

J. A vector of O's and 1's (JSTI(L)). A zero indicates a
failure of the optimizing subroutine used in that trial and a
1l denotes a successful use.
If several problems were solved in the run and the final output &lso
shows the total elapsed time for all of them and the total number of problems.
This case only arises when several problems are solved for functions differ-

ing only in the sets of defining parameters.

I. Subroutine RWSUB

The first subroutine called by MAIN is RWSUB.

RWSUB is used to read from DATA, and then print, the names of the
subroutines used, identified also by the date of their compilation and any
other information pertaining to each subroutine used in the runm.

This is just a way of recording identification information in the
printed output to facilitate anelysis of results, debugging and testing

matters.
Any other Hollerith statements or comments, as desired, msy be read

from DATA and then printed in the output using RWSUB in the same manner.

YI. Subroutine RSDTA

RSDTA reads input data. It reads in all the necessary parameters
for the optimizing subroutines together with the ones controlling the
generel work of the code. Values for the following variables and pareameters
ere read in:

KR, KR1, ..., KR25 denote control keys

N denotes the number of varisbles, and in linear problems N is
normally one more than the number of unknowns because the homogeneous form

is used.

M denotes the number of equations or inequetions in linear prob-
lems. It is also available for other uses when linear problems are not being
treated.

NC is normally set equal to N. NC will be used in BATCHE, a sub-
routine not included yet in the code.

NTSNC denotes the maximum number of times subroutine SNICON can be
used.

RTC denotes the maximum number of variables to be analyzed. In
linear problems it is normally one less than N.

NORVI(J) denotes the order in which the variables will be analyzed.
Recombination of NORVI(J) and NTC gives flexibility for analyzing the vari-
ables in any desired order.

MXTRI denotes the maximum number of trials to be performed. MXTRI
is reached unless failure of all the iterative procedures occurs in sequence
or NTSNC is attained.

NDECI denotes the number identifying the chosen criterie for ending
trials (e.g., a certain number of functional evaluationms).

MXNEL denotes the maximum number of functional evaluations allowed
within a trial.

MXTIM denotes the maximum amcunt of time, in some convenient unit,
allowed for any one trial.

IMDS denotes the number identifying the adaptive mechanism used in
ADAPT whenever several are available.

L1l is a control perameter used im subroutine RCPRO. ILLl must be
set equal to unity at the start of each run, and it is modified by the

program at later stages.

LI2 18 a control parameter used by subroutine EVALT. ILL2 must
be equal to unity at the beginning of each runm.

LL3 is a control parameter used by subroutine OUI‘PUT.» LL3 must
be set equel to unity at the beginning of each runm.

LIk is a control parameter used by subroutine OPTIMJ. LI4 mst
be set equal to unity at the begimning of each run.

LLS is a control parameter used by subroutine SNICON. Its role
is explained in the description of subroutine SNICON.

116 is a control parameter used by subroutine ADAPT, LL6 must be
set equal to unity at the beginning of each run.

I0R is a control parameter used by the optimizing subroutines.
IOR must be set equsl to unity at the beginning of each run.

EP1 denotes the parameter El that is used to define when the
functional value at the end of ome trial, FMAX, is "better" than the func-
tional value at the end of the preceding trial, PFMAX.

TOL denotes the fraction of acceptence for improvement in functional
value between two consecutive cycles of one optimizing subroutine.

TOLS denotes the smallest error accepted in the solution of
systems of linear equations.

IN(K) denotes a three integer element vector used to initialize
the pseudo-random number geperator whenever called by subroutine ADAPT.

IR (K)denotes a three integer element vector used to initialize
the pseudo-random number generator whenever called by subroutine TOSS.

IN2(K), IN3(K) denote three integer element vectors used to ini-
tialize the pseudo-random number generators. These are free to be used in

eny subroutine written by the user and associated with his problem.

PN(J) denotes the starting vector.
PNMAX(J) and PNMIN(J) denote upper and lower limits for each
variable.

NCODS denotes the number of optimizing subroutines available.

The following is a set of parameters used by the optimizing
subroutine RANDOM:

MCYCLE denotes the maximum number of cycles the subroutine can
be used. It is reached unless one of the internal stopping rules of the
subroutine is atteined first.

NTES denotes the maximim npumber of functional evaluations within
a cycle.

NTNCYS denotes the meximum number of continuous cycles accepted

without significant improvement in the functional value.

The following are the parameters used by the optimizing sub-
routine SHRINK:

MCYCLO denotes the total pumber of cycles to be performed. It
is attained unless one of the internal stopping rules is reached first.

RTOS denotes the meximum number of functional evaluations per
cycle.

NTNCOS denotes the maximum number of continuous cycles accepted
without significent improvement in the functional value.

SHRON denotes the fraction by which the operating space is re-

duced after every complete cycle.

- 10 =

The following set of perameters is used by the optimizing sub-
routine SATTER:

MRDTN denotes the total number of cycles to be performed. It is
reached unless one of the internal stopping rules is attained first.

NTIS denotes the total number of functional evaluations to be
performed in a cycle.

NDTR denotes the maximum number of continuous changes in direction
accepted without significant improvement in the functional value.

STEP denotes the step size.

The following is a list of the parameters utilized by optimizing
subroutine IOCK:

DEL denotes quantity specifying incremental change in all variables.

DEIR denotes ratio by which DEL is to be changed. DEIR is always
equal to or less than unity.

DEIMIN denotes the minimum allowable value of DEL.

DELTA denotes a quantity specifying size of pattern move.

SHRUN denotes an adjusting factor for DELTA.

The following variables are used by subroutine SNICON:

DAMEL denotes the relaxation parameter in linear and nonlinear
programming problems, and is available for other uses in other problems.

THETA denotes an exponential reduction factor 0 , taking DEIMIN
to (ODEIMIN when SNICON is called more than once in & linear problem. THETA
is free for other uses in other problems.

OMEGA plays the same role for SHRUN that THETA plays for DELTA;

again for linear problems and free for other uses otherwise.

- 11 -

TAU denotes the adjusting factor for the relaxation parameter
DAMBL, calculated for mathematical progremming problems as a function of
the actual error and the maximum permissible error; free for other uses in
other problems.

RO denotes the adjusting factor for TAU in mathematical programming
problems, making TAU greater after each adjustment of the relaxation par-
ameter; free for other uses in other problems.

RISTK denotes the maximum allowable error in satisfying the linear
inequalities in mathematical programming problems; free to be used otherwise
in other problems.

KR1lk controls the printing of the informetion previously read in
as data. If KR14 is less than or equal to zero then printing is executed;

otherwise control is returned to MAIN.

A. Subroutine RFMIS

RIMTS makes it possible to read formats as part of the data, to a
maximum of ten different formets. These varisble formats are left available
to the users. KR15, in subroutine RSDTA, controls the calling of RFMTS.

If KR15 is greater than zero then RFMIS is called. Otherwise transfer is

made to the reading statements of RSDTA.

I1I. The Executive Portion of the Program

It is intended here to present what we conslider the most important
portion of the program: the adaptive process. A brief introduction with
the role of each one of the subroutines involved is included first together

with a general description of the process. This introduction is followed by

- 12 -

a more detailed presentation of subroutine ADAPT and subroutine OPTIMIJ.
The work of other related subroutines, e.g., DECIS, is described as it

appears convenient.

A. Overview

Subroutine ADAPT is the adaptive mechanism portion of the
progrem. It selects one from the group of optimizing subroutines for
use in each trial and decides whether the most recent use of each is to
be considered a SUCCESS or a FAILURE.

Subroutine ADAPT delegates many of its functions to subroutines
LPRMT, IDECI, OPTIMU, DECI (through OPTIMJ), OUTPUT and RCPRO. Each of
these six subroutines is described briefly in subsequent paragraphs of this
section. A simplified Flow Chart of ADAPT is included in Appendix C.

Subroutine LPRMI' reads in both the structure and the state (initial
probabilities) perameters of the adaptive mechanism ADAPT,

Subroutine RCPRO recomputes the state probabilities after every
trial. Here a trial is defined as the use of some one optimizing subroutine
for a specified period of time, as for some maximum number of functiopal
evaluations, or in accordance with some other selected criterion. At the
end of each trial the functional value is compared against the best previous
one. If the present functional value is the best, the result of the trial
is considered a SUCCESS and otherwvise a FAIIURE.

The information concerning the technique in use, the trial number,
and the condition at the end of the trial (i.e., SUCCESS or FAILURE) is
utilized by RCPRO to recompute the new state probabilities of the system.
The optimizing subroutine with the highest number of previous successes,

after several trials, will formally have the highest probability of reuse.

-13 -

Subroutine OPTIMJ calls the different optimizing subroutines in
accordance with the decisions made by ADAPT. OPTIMJ also keeps account of
the number of times each optimizing subroutine is called, as well as the
amount of time each one of them is used. Subroutine EVALT, the one carrying
out the functional evaluation whenever required, is called by OPTIMJ; counts
of the number of calls to EVAIT are stored as NEL and NEIl. A simplified
Flow Chart of subroutine OPTIMJ is included in Appendix C.

Subroutine IDECI initializes the decision criterion at the be-
ginning of each trial. These criteria are used later by subroutine DECIS,
called by OPTIMJ, to decide whether or not the end of a trial has been
reached.

Subroutine OUTPUT is controlled by one of the control keys.
Whenever OUTPUT is called, either by ADAPT or OPTIMUJ, most of the informa-
tion available at the calling time is printed out. The information may
contain: the number of the optimizing subroutine currently in use, the
actual state probabilities of the system, values of variables, functional
value, best previous functional value together with the corresponding
vector, number of functional evaluations within the trial, accumulated

number of functional evaluations, end so forth.

B. Subroutine ADAPT

It is convenlient to describe in detail the operation of ADAPT
together with the related subroutines. Definition of the variables will be
helpful also.

The following variables will be found in the FORTRAN IV listings

included in Appendix D:

-1k -

I1 denotes the number of times the optimizing subroutines have
been unsuccessful in sequence. Whenever Il reaches a value equal to the
total number of optimizing subroutines (NCODS), this means that all
FATLED in sequence.

J1l denotes a counting parameter ranging from unity to NCODS, and
is used to indicate the number of the optimizing subroutine selected for
next use. Once the selection is mede ICODE is set equal to Jl.

ICODE denotes the number of the optimizing subroutine in use at
any given time.

ITRIA denotes the number of the trial.

IBEST denotes the number of the trial at which the optimm functional
value was attained. Each time a better functional value is found IBEST is
set equal to the number of the trial at that moment.

IROUT denotes the number of the optimizing subroutine in use
during triel numbered IBEST.

KEY(I) denotes the condition causing return from the Ith optimizing
subroutine to OPTIMIJ. TIf KEY(I) is unity this indicates normal return; to
call EVALT, check decision criteria etc. If KEY(I) is zero, this indicates
that one internal stopping rule was reached.

1IZ(I) denotes the number of times optimizing subroutine numbered I
is called in sequence, after failure in use, and before another subroutine
is a success. If IIZ(I) is unity, then Il is increased by unity, and if
greater than 1 the control is transferred to select a new optimizing sub-
routine.

10CX(I) records success or failure of the optimizing subroutine

numbered I for its most recent use: success if LOCK(I) = 1 and failure if

- 15 -

10X (1) = 0.

The first thing done by subroutine ADAPT, whenever LL6 = 1, is to
call subroutine LPRMI'. LL6 is read in by RSDTA, where it is set equal to
unity. LI6 is set equal to two immediately after returning from IPRMT so0 in
subsequent calls to ADAPT the statement calling LPRMI' will be skipped.

As was said previously, the state probabilities of the system are
recomputed at the end of every trial by RCPRO. The code presented here for
ADAPT, and for RCPRO, maekes use of a linear stochastic learning model as the
adaptive mechanism; RCPRO is easily rewritten to represent any alternative
adaptive mechanism that may be of interest, and several such mechanisms can
be included as options within GROPE if so desired.

The information required by the symmetry learning model, as coded
in our present version of ADAPT, is as follows:

ITRIA, the number of the present trial

PROBI (ITRIA-1), the vector of the state probabilities from the
previous trial, where I 1s ranging from 1 to NCODS

JRES(ITRIA), the number of the subroutine used in the present
trial

JSTI(ITRIA), set at zero after a failure and at unity after a
success.

The output of RCPRO will be a revised value for PROB. (ITRIA), representing
the new state of the system after trial numbered ITRIA.

After PROBI(ITRIA) has been calculated following trial ITRIA,
ITRIA is increased by unity and the result compared against the maximum
number of trials to be performed. If the maximum number of triels has been

reached control is returned to MAIN where final output is printed out.

- 16 -

If there are more trials to go transfer is made to begin a new trial by
closing loop @ — @ .

Whenever transfer is made to close loop@‘?@ the counting
parameter Jl is initialized to unity. It is numbering the order in which
the optimizing subroutines are called. A set of random numbers between zero
and unity is generated next. The set contains a total of NCODS random
numbers. The element J1 of the current vector of state probabillities is
compared against the corresponding element of the vector of random numbers
in statement number 6 of ADAPT. If PROBJl(ITRIA) > m(J:L)* the optimizing
subroutine numbered J1l is chosen to be used and so

ICODE = Jl
If PROBJl(ITRIA) < RNB(J1), J1 is increased by unity and the previous test
is performed again. Whenever J1 reaches a value equal to RCODS with no
selection of optimizing subroutine transfer is made to statement T to
generate a new set of random numbers, initialize J1 to unity and to compare
the vector PROB against the vector RNB. A suitable value of RNB will be
eventually found so as to permit the selection of a member of the group
of optimizing subroutines.

Once the selection of optimizing subroutine has been made, the
element LOCK(ICODE) of the vector IOCK is compared against zero. The vector
I0X(I) is set equal to unity, for I = 1, NCODS, at the start of ADAPT as
well as each time a subroutine is SUCCESSFUL. ILOCK(ICODE) is changed to zero
whenever subroutine numbered ICODE fails during the calculation process.

The role the vector I0XK(I) plays is very important, for it pre-

cludes the reuse of a particuler optimizing subroutine immediately after

* ,
RNB stands for random number.

- 17 -

failing but also before at least one other subroutine has been & success
in its last use. In other words, LOCK(I) blocks the possibility of
having a repeated use of a subroutine under conditions where it had previ-
ously failed. Each trial when an optimizing subroutine succeeds the
corresponding value of IOCK(I) is again set equal to unity.

If IOCK(ICODE) is zero then tranmsfer is made to statement 8
vwhere LIZ(ICODE) is incremented by unity. Next, LIZ(ICODE) is compared
against unity. If LIZ(ICODE) = 1 then the subroutine numbered ICODE is
called after a failure and Il is incremented by unity in statement 160.
The next step is to compare Il against NCODS. Whenever Il > NCODS then
all the optimizing subroutines have failed in sequence, statement 10 is
printed out indicating this fact, and control is returned to MAIN. When
1IZ(ICODE) > 1 this indicates that more than one attempt to call the sub-
routine numbered ICODE has been made after failure and before any other
subroutine has succeeded; hence control is transferred to statement 4 to
select another optimizing subroutine.

LIZ(ICODE) is then ensuring that Il is increased by unity only
when subroutine numbered ICODE is chosen for the first time following un-
successful use. It can be seen that any optimizing subroutine may be
selected at any time because of the selection process already described.
It is required, consequently, with this selection process, to have the
control vectors IOCK(I) and IIZ(I) as explained.

The NO branch of the logical statement IS LOCK(ICODE) = 0 ?
transfers control to statement 9. Il and the vector LIZ are again initial-
ized, and the vector JRES of responses is updated in statement

JRES(ITRTA) = ICODE .

- 18 -

Subroutine IDECI is next called to initialize the chosen decision
criteria. For example, if the deciding criteria are numbers of functional
evaluations then NEL is set equal to zero. NEL records the number of func-
tional evaluations within a trial, and NEL(1) records the total number of
Tunctional evaluations made so far. The control parameter NDECI, read in as
DATA, denotes the number identifying the chosen decision criteris and as such
guides the operation of subroutines IDECI and DECI.

After the decision criteria have been initialized subroutine OPTIMJ
is called. The operational aspects of OPTIMJ will be described briefly in
one of the later parts of this section. Immediately after returning from
OPTIMIJ, at the end of one trisl, the result of the trial is defined. The
functional value at the end of one trial, FMAX, is "better” than the func-
tional value at the end of the preceding trial, PFMAX, if and only if

PFMAX - FMAX > EP1
If this condition is met then control is transferred next to statement 20
to build up the stimuli vector, to store FMAX in the location of PFMAX, to
record the trial's number (IBEST = ITRIA), to store the variable's vector
as PBESV(J) and to reset IOCK to unity. The next program command is
LOCK(ICODE) = KEY(ICODE) .
The elements of the vector KEY were set initially equal to unity. The element
ICODE of the vector KEY is changed to zero whenever the optimizing subroutine
numbered ICODE reaches one of its internal stopping rules. KEY is intended
10 block a new call to subroutine numbered ICODE in a stage of the calcu-
lation process where it reached some internal stopping rule, e.g., lack of
convergence after certain maximum number of iterations. The role played by

KEY is very similar to that of LOCK. KEY and LOKX are interrelated and it

- 19 -

is important to remember that reaching one internal stopping rule of the op-
timizing subroutine does not mean unsuccessful use; the work of the sub-
routine, up to that point, may be very well better than the previous one.
Nevertheless, and because the control on calls is exercised by IOCK, it is
required to have the substitution statement described previously. Hence,
10CK (ICODE) will present & value of zero even though subroutine numbered
ICODE was not considered a fajilure by ADAPT.

A comment is printed out now indicating the number of the trial,
the optimizing subroutine used, the fact that the use of the subroutine has
been a success and the number of functional evealuations.

In such cases where the result of the trial is not comsidered
better than the previous one control is transferred next to statement 21.
The bookkeeping operations described for the successful use are carried out
here for the unsuccessful one, that is,

0

JSTT (ITRIA)

1LocK (ICODE) = O

PRINT OUT COMMENT
Subroutine OUTPUT may be called here under the discretion of KRS.
After returning from OUTPUT or after skipping the command calling OUTPUT,
the state probabilities of the system are recomputed by subroutine RCFPRO,
the number of trials increased by unity and finally loop (g?} —_—> (gfg)
is closed as described esrlier in this section.
It is worthwhile to explain briefly the operation of subroutine

OPTIMU since it plays an important role in the operation of ADAPT.

- 20 -

C. Subroutine OPTIMJ

After one of the optimizing subroutines has been selected, and pro-
vided previous initialization of the decision criteriom carried out by sub-
routine IDECI, subroutine OPTIMJ is called by ADAPT.

The program parameter LI4 determines the entry point to OPTIMU.
LI4 is set equal to unity by RSDTA so the entry point for the first time
will be statement 9. The vectors LE(I) and IUT(I) are initialized to unity
and zero respectively. The role of LE(I) and IUT(I) is found in a subsequent
section describing the optimizing subroutines. Subroutine EVAIT is called
next to evaluate the objective function at the initial point. The starting
point must be selected by the experimenter and it is obvious +that the
chosen point has an important effect upon the amount of time necessary to
complete the optimization computation. Knowledge of the experimenter con-
cerning the problem under study will be of great value in selecting a point
not too distant from the one he is seeking. After the function has been
evaluated at the starting point the following substitution statements are
executed

FMAX = SN

PFMAX = SN

PBESV(J) = PN(J)

BESV(J) = PN(J) for T =1, N
The functional value at any time is stored as SN and the corresponding
vector as PN. The substitution statements are just the initialization of
those variables to the best values so far, that is, the initial omes.

11k is reset equal to two and it keeps this value unless modified

by subroutine SNICON in later stages of the process. Hence, subsequent

- 21 -

calls to subroutine OPTIMU will have as entry point statement 10.

The portion of subroutine OPTIMJ between statements 10 and 20 con-
tains the commands to call the different optimizing subroutines. This
portion contains also clock readings and counting perameters to record the
time each one of the subroutines is used and the number of times they were
called respectively. NLOOK stores the number of times the optimizing
routines are used all together.

The next statement is a computed GO TO guided by NGO as follows:

G0 To (21, 25), NGO
NGO brings its value from the optimizing subroutine in use. NGO is set equal
to two if some internel stopping rule of the subroutine occurs. Here, a
comment is printed out indiceting the number of the subroutine, the number
of the trial and the pumber of functional evaluetions in the trial. The
element ICODE of the vector KEY is set equal to zero as was previously ex-
plained, the parsmeter LOR equel to unity (its work is described later) and
the vector LE equal to unity. Control is then returned to ADAPT for the
selection of a new subroutine.

Each time the optimizing subroutines require a functional evaluation
control must be trensferred to OPTIMJ which calls subroutine EVAIT. EVALT
evaluates the function being optimized; in this sense, EVALT defines the
optimization function. NGO is set equal to unity by the subroutine in use
and transfer is made to statement 21 rather than to statement 25.

Subroutine DECIS is called in statement 21. DECIS merely tests if
the chosen decision criterion for switching from one optimizing subroutine
to another (end of one trial) has been met and if so it sets LGO equal to two,

control is transferred next to statement 14 where LOR end the vector LE are

- 22 -

reset to unity before returning to ADAPT. If the decision criterion has
not yet been reached LGO is set equal to unity and control transferred to
statement 15. Subroutine EVALT is called at this point, the control param-
eters NEL and NELI are increased by unity and subroutine OUTPUT called 1if
KR20 is so indicating. Transfer is made next to statement 10 where the same
subroutine is evoked again and the whole process reinitiated.

Before finishing this section on the adaptive process it is of
interest to include some comments suggested by our limited experience with

the program.

D. Some Comments on the Adaptive Process

There are many obscure aspects in relation to the work of ADAPT
and OPTIMJ and their related subroutines. New ideas, changes, deletions,
and other suggestions of readers will be most welcome.

Perhaps the most important point and, unfortunately, the most ob-
scure one, concerns the proper time for switching from one optimizing sub-
routine to another. On the one hand, the criteria should be genersl enough
to include measurable and definite points compatible with all the subroutines
(number of functional evaluations, periods of time of equal duration at
work, etc.). On the other hand, basing the changes upon too general criteria
is dangerous. By means of general criteria we can perfectly well be calling
& new subroutine precisely at the moment in which the present subroutine as
& consequence of a set of Just exploratory attemptis is after the right path.
This is extremely important if we wish to introduce accelerating convergence

procedures.

- 23 .-

The comments of the preceding paragraph strongly suggest a homo-
geneous group of subroutines, with similar iterative structure even though
conceptually different. The selected subroutines, for example, should be
able to begin the computation process at any arbitrary point. That point
could be the experimenter's decision at the very beginning of the process or
the last point left by another subroutine as a consequence of the switching
criteria.

Accelerating comvergence procedures are of great importance and
valuable help. It is interesting to say that while it is importent to work
with a homogeneous set of optimizing subroutines we should not forget that
proper combinations of apparently nonhomogeneous techniques msy speed up
the convergence to an answer.

Another important point has to do with the effect of the sequence
of calling optimizing subroutines upon the efficiency of the optimization
process. Identical values shall be assigned to the initial state probabilie=
ties whenever there is no information on hand about the problem. As a con-
sequence each optimizing subroutine has the same probability to be selected
at the beginning of the calculation in accordance with the random selection
already described. In accordance again with the selection process presented,
the optimizing subroutine with the highest probability will normally have the
highest chance to be reused in later stages of the calculation. We believe
this to be a satisfactory way to select optimizing subroutines. However, we
are somewhat concerned about the effects of the calling sequence. later re-

search mey lead to better ways of selection.

- 24 o

IV. Subroutine SNICON

SNICON is called by MAIN, whenever KR16 > 0, after an optimization
calculation is completed. SNICON provides a means for repeating an optimi-
zation calculation on the same problem with altered parameter values, and
possibly also with new values for the optimization parameters. Eech recal-
culation is completely independent of the preceding ones, and is normally
used to check previous solutions.

One standard option (LL5 = 1) starts the recalculation at an initial
point remote from the optimum point already loceted, but within the region
defined by the constraints (PRNMAX and PNMIN). If the variables are uncon-
strained, the user must provide arbitrary constraints that will then be used
td determine the location of the remote point.

The recalculation can be arranged as a continuation of the pre-
ceding one (LL5 = 2). 1In this instance, the new initial point will normally
be at the optimum already found. The usual objective in this is to permit
change in the search parameters to provide increased accuracy in the results.
In problems involving relexation parameters that require readjustment during
the iterative optimization process, as for mathemstical programming problems,
SNICON does this.

The control parameter NISNC, as was described in subroutine RSDTA,

specifies the number of recalculations to be made under SNICON.

OPTIMIZING SUBROUTINES

Four subroutines were chosen to form our first set of optimizing

procedures for GROPE which are briefly described in this section.

- 25 .

The direct search technique known as BEST UNIVAR developed by the
a.uthorsa’ 3 at The University of Michigan is ready to be added to GROPE.

Four more subroutines are under study to introduce the necessary changes to
make them compatible with GROPE. These subroutines are VARMINT, STEP, MINFUN
and PARTAN. Some experiences with these optimizing procedures are reported
elsewhere.h

The four optimizing subroutines forming the core of GROPE were
written as subroutines of our general master programs for optimization (pa.rt
of other research). They have been tested independently with several sample
problems.

One of the subroutines was written in FORTRAN II, at The University
of Michigan, as part of another research project. It was adapted for the
Berkeley System and then translated (using SIFT) to FORTRAN IV. We call
this subroutine IO0K. IOCK is based on ideas presented for the first time
in the Westinghouse Scientific Paper 10-1210-1-P1 by R. Hooke and T. A.
Jeeves.5 LOOK was coded in FORTRAN II and presented with several applica-

tions in the Westinghouse Scientific Paper 6-41210-1-P1 by C. F. Wood. Our

®Flood, Merrill M. and Alberto Leon, "A Direct Search Code for the

Estimation of Parameters in Stochastic Learning Models,” Mental Health
Research Institute, The University of Michigan, Preprint 109, May 1963.

3Flood, Merrill M. and Alberto Ieon, "A Generalized Direct Search
Code for Optimization," Mental Health Research Institute, The University of
Michigan, Preprint 129, June 196k,

l‘Intaon, Alverto, "A Comparison Among Eight Known Optimizing
Techniques,” Space Sciences lLaboratory, Internal Working Paper No. 20,
Aygust 196{&.

5'1'he peper was published subsequently in Journal Assoc. Computing
Machinery, 1961, 8, 212-229.

a

- 26 -

subroutine is a modified version of the original LOCK even though the main
ideas remain unchanged. We are indebted to Mr. Wood for a copy of the deck
of LOK's original FORTRAN II code.

The other three subroutines were written in FORTRAN IV for GROPE.
These optimizing subroutines are a Simple Random Strategy (RANDOM), a
Shrinkage Random Strategy (SHRIRK), and the Satterthwaite strategy (SATTER).

Our codes for RANDOM, SHRINK and SATTER are based on ideas pre-
sented by D. S. McArthur in the Esso Research and Engineering Report No.
RL34M61l. We are indebted to Dr. McArthur for a FORTRAN II copy of all his
working decks. The fundamental difference between our version and McArthur's
original ideas lies in the orientation of our present research. Costs in-
volved in meking the experiments and values assoclated with the same tests
are not taken into account here; but they play an important role in
McArthur's work. Another important difference is the fact that McArthur's
work 1s mainly stochastic in nature and we are not considering stochastic
optimization, at least in this stage of our research. Some additional
changes were introduced to make possible the use of these subroutines by
GROPE.

There exist three program parameters to guide the optimizing sub-
routines in some phases of the work which are identical in all of them. These
parameters are:

1E(I), a vector of NCODS elements

IUT(I), a vector of NOCDS elements
and IOR

The first executable command of each optimizing subroutine is a

computed GO TO statement with two transfer points as follows:

- 27 -

Go T0 (n:L , n2) , LOR

IOR is set equal to unity by MAIN and consequently the above statement causes
control to be transferred to statement n,. This statement prints out the
name of the incoming subroutine and immediately after that IOR is reset to
two suppressing the previous print out from subsequent calls to the same sub-
routine within the same trial. At the end of a trial, at the beginning of a
nevw problem or before returning from SNICON, whenever it is used, IOR is set
equal to unity again. This gives proper identification of the subroutine

in use.

It was stated previously that each time the optimizing subroutine
in use requires the evaluation of the objective function control must be
transferred to OPTIMU which in turn calls EVALT. The vector LE(I) controls
the entry point to the subroutine after returning from OPTIMJ. IE(I) is set
equal to unity at the beginning of the run and also at the end of each trial.
Proper value is assigned to element ICODE of the vector LE before leaving
for each functional evaluation assuring that return is made to the right
point as may be seen in the FORTRAN IV listings.

Some optimizing subroutines establish at the very beginning of
the run parameters to be used later on as step sizes, fraction of the oper-
ating space to be inspected and the like. However, these parameters are
reevaluated during the computation process as & function of earlier results
or at definite points during the process. Because of the sequential nature
of GROPE one would not want to reuse the initial values of these parameters
unless so decided by the subroutine in agreement with the optimizing pro-

cedure. In other words, if a subroutine is left and, let us say, certain

- 28 -

step size was in use at that time, it is desirable to utilize the same one
the next time the subroutine is called back again. The vector IUT(I) exer-
cises the required control to ensure the above condition is satisfied. IUT
is set equal to zero by OPTIMJ and the element ICODE‘of IUT reset to unity
whenever necessary.

The set of optimizing subroutines actually working with GROPE uses
subroutine TESTCO and subroutine TO0SS.

Subroutine TESTCO mekes it easy to include side conditions present
in a problem that are difficult to treat more directly as part of the function
to be optimized. TESTCO is called if KR1l > O. The call is executed after
changes have been made in the value of the variables by the optimizing sub-
routine but before calling the evaluating subroutine EVALT. We should
meke it clear that we distingulsh between constraints and side conditionms.
Upper or lower limits imposed upon the variables are treated here as "con-
straints," and are controlled by KR6, KR7 and KR9 in the optimizing sub-
routines. More general restrictions on the variables, represented by equa-
tions or inequations such as

a5x1+xj+xk_<_b, or

c>x, +x,>4,

i J
are called side conditions and treated within TESTCO.
The above scheme may be unnecessary in new procedures brought into
GROPE in the future. They probably have their own way of handling the
boundaries problem. Keeping the subroutines as close as possible to the

original version eliminates reprogramming and possible errors.

- 29 -

The other subroutine of general use is TOSS. ™TOSS is called by the
optimizing subroutine whenever KR > 0, and permutes the components of the vector
NORVI randomly. We have found substantial improvements in quality and speed
of solution for certain classes of problems when TOSS is used. TOSS uses
RAM2, a MAP routine listed in Appendix D. RAM2 is a pseudo-rendom number
generator, for numbers distributed uniformly between zero and unity: RAM2
is borrowed from the Michigen System (in FAP) but the necessary modifications
have been made to meke RAM2 compatible with the IBJOB monitor at Berkeley,
and usable with FORTRAN IV programs.

Brief descriptions of LOK, RANDOM, SHRINK and SATTER are given
below, Flow Charts are included in Appendix C and FORTRAN IV Listings in

Appendix D

I. SIMPLE RANDOM (Subroutine RANDOM)

The RAKDOM search strategy is presented and discussed by Brooks6’ T
vho suggests this strategy as a helpful one in problems with large number of
variables. RANDOM is a good technigque to use whenever there is no informa-
tion on hand about the nature of the problem. It seems inadvisable to use
RARDOM with problems involving few variables and expensive tests. The RANDOM
strategy 18 not an iterative method but the mechanics of the code could be
considered similar to the ones using iterative procedures.

In SIMPLE RANRDOM, tests are simply run at random; that is, the

level of each variable is set at random within predetermined limits. No use

6Brooks » Se H., "A Discussion of Random Methods for Seeking Maxima,"
Journal of the Operations Research Society of America, 6, No. 2, 1958.

TBrooks , S. K., "A Comparison of Maximum Seeking Methods," Journal
of the Operations Research Society of America, 7, No. k, 1959.

—30-

is made of past date in decliding where the test should be run. The highest
response attained is accepted as the optimum.
The parameters of RANDOM were explained in the presentation of sub-
routine RSDTA.
There are two stopping rules in the operation of RANDOM:
8. Whenever the maximum number of cycles without signifi-
cant improvement is reached;
b. Or, if the sbove is not reached, at the completion of the
total number of cycles.
It is important to say a few words sbout the meaning of improvement. Im-
provement is accepted within a cycle so long as it is recogniza‘ple in the
full significance of the machine. In order for the best point of a cycle to
be considered better than the best one of the previous cycle, the point has
to be better than the other by a prescribed fraction of it. For example:
If we define SC = best point of present cycle
SP = best point of previous cycle
TOL = frection of improvement
we say that improvement occurs in a minimization problem, to be specific, if
8C < SP + TOL * ABSF(SP)
Besldes the control keys used in the general program SIMPLE RANDOM
utilizes KR17 and KR4 to guide cells to subroutine OUTPUP in the way de-

scribed in Appendix B.

II. SHRIMKAGE RANDOM (Subroutine SHRINK)

The Shrinkage Random Method is described and anelyzed by Brooks in

the references inserted in footmote of page 26.

The shrinkage strategy is, in a sense, the same as SIMPLE RANDOM.
Here the searching space is gradually reduced as the research program continues.
Tests are run purely at random within the operating limits for NTOS tests.
The operating space is then reduced (SHRON) by a fraction, with the best re-
sult discovered so far as the center of the remaining operating space. NTOS
tests are then run at random within the reduced space. This procedure con-
tinues until one of the stopping rules is met.
A list of the parameters used by SHRIRK is found together with our
description of subroutine RSDTA.
As in SIMFLE RANDOM there exist two stopping rules in SERINK:
a. Whenever the maximum number of cycles without signifi-
cant improvement is reached;
b. Or, if the above is not reached, at the completion of
the total number of cycles.
The users of the SHRIRK idea report that the computer results, in presence of
noise, have shown that SHRINK does not show any slgnificant edventage over a
purely RANDOM search strategy. It is our experience, however, that in prob-
lems where noise is ebsent and the objective function is not ill-behaved,
SHRIRK performs better than SIMPLE RANDOM. 'These results are in agreement
with whet we had expected.
The rules for improvement are the same as in RANDOM. The options

for output printing are the same alsc and are controlled by the same keys.

III. SATTERTHWAITE STRATEGY (Subroutine SATTER)

The Satterthwaite Strategy is fully described by Satterthwaite8 and

BSatterthwaite , F. E., "REVOP or Random Evolutionary Operationm,"
Statistical Engineering Institute, Report Fo. 10/10/59.

- 32 -

is Just one of the many possible ways of introducing the random search idesas
in optimization strategles.

The strategy works as follows: "A starting point is picked at
ra.ndom* and & test is run. A direction is then also picked at random (in the
N-dimensionel space) and an experiment is run one step in that directionm.

If this gives & result which is poorer than the first result, a step is taken
in the opposite direction and another test is run. If this result is better
than the original experiment, additional steps are taken in the same direction
until an optimum has been exceeded. Another direction is then picked at
random, sterting from this opiimum point, and steps are teken along the new
vector until apother maximum hes been exceeded" (Esso Research Report).

As McArthur points out, this strategy differs from the other stra-
tegies in the way things are handled at the boundaries. Satterthwaite sug-
gests that if a vector reaches a boundary it should be rebound from the
boundary rather than stopping at it. There are many other ways of solving
the situation at the boundaries depending upon the characteristics of the
problem as well as on the nature of the constraints. BEST UNIVAR, as an
example, uses a compromise between stopping &t the boundary and returning
inside the region.

The parameters required by SATTER are listed in the descriptiom
of subroutine RSDTA. As in the previous strategies there are two stopping
rules in SATTER:

8. Whenever the maximum number of changes in direction

without significant improvement is reached;

*Or at the discretion of the experimenter.

- 33 -

b. Or, if the previous one is not met, at the completion
of the total number of experiments.

SATTER eccepts improvement, going in the same direction, so long as
it is recognizable in the full significance of the machine. Following the
same ideas of RANDOM and SHRINK, in order for the best point of a particular
direction to be considered better tham the best point of the previous direc-

tion, the point has to be better than the other by a prescribed fraction of it.

IV. PATTERN SEARCH STRATEGY (Subroutine LOOK)

LOOK is fully described in the Westinghouse publications mentioned
earlier in this paper.
LOK may be described briefly as follows:g

1. Initialization--A starting point for the sesrch is calcu-
la.ted* and stored.

2. Exploratory Search--Various moves are made to determine a
desirable direction for the search. Any move which is better than
the reference value is kept and becomes the new reference value.
On the initiel entry or whenever the exploratory search is not
immediately preceded by & pattern move, the reference value is the
last base point. Following a pattern move, the reference is the
value at the end of the patterm move.

3. Successg?--If the best value found for the function during
the exploratory sesarch is better than its value at the last base
point, e new base point is established. Otherwise, the last base

point is restored.

gwobd, C. F., "Recent Developments in 'Direct Search' Technigues,”
Westinghouse Research Report 62-159-522-Rl.

*or given as data.

-3 -

k, Save base point and make Pattern Move--The latest functional
value replaces the previous value and the corresponding values of
the independent variables do likewise. This establishes a new base
point. The pattern move is generated by moving each independent
variable away from the la est base point value by an amount equal
to the difference between the o0ld and new base point values. A
pattern move is always followed immediately by an exploratory search.

5. Restore Last Base Point--The independent variables are set
at the velues corresponding to the last base point. The functional
value for the same point becomes the initial reference for testing
the individual moves of the exploratory search.

6. Had Pattern move just been made--If the exploratory search
preceding the feilure wes itself preceded by a pattern move, per-
form another exploratory search. Otherwise, check for search com-
pletion.

T. Can step size be reduced--If the step sizes for all the
independent variables are at their minima, the search is complete.
Otherwise, reduce step size and perform another exploratory
search.

Our version of LOOK presents, as was said before, some differences
with the above description.

One of the modifications concerns the order in which the variables
are to be analyzed. The original IOCK examines the variables always in the
same regular order, while in our version the experimenter has comtrol over

the order by means of a vector read in as data.

- 35 -

Another major change gives access for controlling the generation of
the pattern move. In the original IOOK the pattern vector is equal to the
difference between the old and new base point values. Our version multiplies
this difference by a factor (DELTA). Moreover, if the pattern move is success-
ful DELTA is increased by SHRUN the next time.

An option to inspect Just a portion of the set of variables is
also available in our version together with the possibility of meking tests of
grouping effects by performing the optimization with different subsets of the
entire set of variables.

The parameters which are necessary for the operation of LOCK are pre-
sented in our description of subroutine RSDTA.

The final termination of the search is made when the step size is
sufficiently small (DEIMIN) to insure that the optimum has been closely ap-
proximated. In any case, the step size must be kept above a practicel limit
imposed by the means of computation. The search is stopped when two condi-
tions occur at the same time, nemely (1) the step size is ot minimum (DELMIN)
and (2) the forward snd reverse moves of all independent variables fail
following 2 base point test failure.

As in the techniques described previously there are two critferia
for move evaluation:

a. BEvaluation of individual moves: here, an improvement
is accepted so long as it is recognizable in the full
significance of the machine;

b. Test to determine whether a new base point has been
found: in the base point test, the point has to be

better than the last by a prescribed fraction of the

- 36 -

last point. As before, this fractiom is given by TOL.
As Hooke and Jeeves say, "In practice, pattern search has proved particularly
successful in locating minima on hypersurfaces which contain 'sharp valleys'.
On such surfaces classical techniques behave badly and can only be induced
to approach the minimum slowly."
Internal options are available for testing boundaries and output

printing. Control keys exercise the control of these optioms.

- 37 -

OPERATION OF GROPE

GROPE uses to attain its second objective, at least in its
present stage, the Overlay Feature of IBLDR (The Loasder Operating under the
IBJOB monitor, Berkeley System).

"Overla.ylo is & method of core storage utilization by jobs that
exceed the capacity of core storage. The programmer divides the job to
be executed by the overlay method into links. A link is one or more decks*
of & job. One of these links, called the main link, is loaded directly into
core storage and remains in core storage throughout the execution of a job
along with the Overlay subroutine and the tables required for execution.
The loader writes the other links, called dependent links, on some extermal
file. A dependent link is one that is usually in core storage only at the
time it is being used. It can be overlaid by other dependent links."

We include in Appendix E three possible overlaying schemes of
GROPE. Some of the advantages of each one of them will be pointed out
later on in this section together with their operating differences. 1In
the figures of Appendix E, the vertical lines represent a link, or links,
into which the program has been divided. Each link may contain one or
more decks or subroutines. The horizontal lines indicate the logical
origin of the links. Link O is the main link, and remains in high-speed
core storage at all times; the other links are stored in some external

file.

lobbers Manual, University of California, Computer Center,
Berkeley, Chapter VII, Section J (The loader).

*frograms or subprograus.

- 38 -

11

"Overlay can be induced only by the execution of a CALL from a

link that is presently in core storage to a link that is not in core storage.
When a CALL statement is executed in a link to any of the decks contained
in another link, the incoming link replaces the link in core storage that
has the same logical origin as the incoming link, and will also overlay all
deeper links in the same chain below that logical origin. A chain is a
sequence of links in core storage from the deepest link required, through
vhatever links precede it, to the main link. It is essumed that the normal
way of terminating the execution of a deck in & dependent link will be with
the RETURN statement."

Referring to Scheme A of Appendix E, as an example, the possible
configuration of links in core at any given time is:

(1) Link O (main link) only

(2) Iink O and Link 1

(3) Link O and Link 2

(4) Link O, Link 2 and Link 3

(5) Link O, Link 2 and Link b

(6) 1Link O, Iink 2, Link 4 and Link 5

(7) Iink O, Iink 2, Link 4 and Iink 6

(8) Iink O, Iink 2, Iink 4 end Iink 7

(9) ILink O, Link 2, Link 4 and Iink 8

Figure No. 4 of Appendix E shows & schematic representation of the
above overlay structure as it is assigned to high-speed core storage. The

input/output buffers will occupy the unused high-speed core storage area

llSee 10, p. 36.

-39 -

between the longest possible link configuration, Number 8 of the example
presented, and the highest available core storage location. The FORTRAN

COMMON area, if used, will be assigned following the library subroutines.

Three Different Overlaying Structures

We heve been using the overlaying feature as an instructive and
necessary exercise even though the capacity of high-speed core memory has
not yet been exceeded. However, it is expected we will face this problem
very soon with the addition of mew optimizing subroutines and alternate
adaptive mechaniams.

Many are the overlaying schemes GROPE can use; three of the many
possible ones are illustrated in Appendix E.

The presence of & high number of links provides space in high-
speed core memory elther for blgger or more optimizing subroutines. However,
the existence of too many links requires s lot of loading and unloading
operstions in the high-speed core memory unit. These operations increase
considerably the execution time. We include next, as an illustrative
example, some of the operationel characteristics presented by the group of
structures of Appendix E during the solution of & particular problem.

a. No overlaying feature:

Execution time: 185.2 seconds
Number of trials: 37

Functional BEvaluations: TO035

b.

- 4o -

Scheme "C":

Execution time: 190.7 seconds

Link 1: loaded 10 times, unloaded 10 times
Iink 2: loaded 8 times, unloaded 8 times
Link 3: loaded T times, unloaded 6 times
Link 4: loaded 8 times, unloaded 8 times
Number of trials: 37

Functional Evaluations: T035

Scheme "B":

Execution time: 403.8 seconds

Link 1: loaded 2 times, unloaded 2 times
Link 2: loaded 2 times, u.nloéded 1 time
Iink 3: loaded 4 times, unloaded 4 times
Link 4: loaded 1 time, unloaded 1 time
Link 5: loaded 1 time, unloaded 1 time
ILink 6: loaded 3 times, unloaded 3 times
Number of trials: 13

Functional Evaluations: 2693

Problem unfinished (Actual execution time exceeded

allowed time for execution.)

Scheme "A":

Execution time: 385.2 seconds

Iink 1: Josded 1 time, unlocaded 1 time
Link 2: loaded 1 time

Link 3: loaded 2 times, unloaded 2 times

-4 -

Link 4: loaded 2 times, unloaded 2 times

Link 5: loaded 1 time, unloaded 1 time

Iink 6: loaded 1 time

Number of trials: 2

Functional Evaluations: 457

Problem unfinished (Actual execution time exceeded

allowed time for execution.)

The following figures illustrate the Increases in available
space for optimizing subroutines with each one of the previous structures.
It must be said that the available space in high-speed core memory is
also a function of the size of subroutine EVAIT. The size of EVAIT in the
specific case we are describing is 13,361 octal locations (up to 100g

locations must be reserved for inmput/output buffers).

Scheme Highest used core location Highest usable core location
No overlaying 61&108 TT013g
c 5514Tg TT013g
B 52hh3g T7013g
A 51736 TT013g

The highest core storage location used by the program without
the optimizing subroutines (i.e., Link O plus the system routines in
Scheme "C") is 531568. The biggest of the optimizing subroutines (LOCK)
requires 2021 octal locations. We have then an approximate number of
220008 locations available for optimizing subroutines whenever using a
subroutine EVAIT of 133618 locations. This means that the biggest opti-

mizing subroutine we cen losd into high-speed memory using Scheme "C" is

- b2 -

one of 22‘0008 size. If we come across & bigger routine it will be necessary
for us to choose a different overlaying structure.
When we talk sbout the size of subroutine EVAIR we imply the sub-

routine itself plus the associated ones it may require for its proper work.

FLEXTBILITY AND LIMITATIONS

GROPE as it is written now is adequate to treat difficult optimi-
zation problems involving as many as 100 variebles,

As was previocusly stated the program has some subroutines that the
user must write and compile in order to treat his particular optimization
problems. These subroutines are EVALT to evaluate the function being opti-
mized, the additional routines required by EVALT, and TESTCO whenever side
conditions are treated in the way described in our presentation of sub-
routine TESTCO. GROPE is written as & minimization code, arbitrarily and
without loss of generality since minimizing a function ¥ 1is the same as
maximizing «F. Nevertheless, the user must have this fact in mind since
the tests for improvement in the functional value follow the minimization
criterion.

The following subroutines should be modified if additiomnal opti-

mizing subroutines are added to GROPE:

1. RSDTA, including the parameters required by the incoming
subroutine or subroutines.

2. OPTIMU providing the calling statements for the new sub-
routine or subroutines. CILOCK readings and counting

vectors must be included also.

- 43 -

3. OUTPUT with the desired variables and parameters to be
printed out in accordance with our description of sub-
routine OUTPUT.

Lk, The new optimizing subroutine or subroutines.

It mist be recalled that the actusl maximum possible number of
optimizing subroutines is 20. If more than 20 subroutines are to be present
further changes in the dimension statements (LE, KEY, LIZ, NT, ISH, LOCK,
PROB, SPROB, RNB, and IUT) are required.

To incorporate edditional adaptive mechanisms, proper changes must
be introduced in subroutine RCPRO and subroutine IPRMP. Additions to sub-
routine OUTPUT may be desirable in these cases.

New decision criteria for switching from ome optimizing subroutine
to anmother will ask for modifications in subroutines IDECI, DECI and OPTIMOU.
Since IDECI apd DECI handle the initialization of the chosen criterion and
subsequent tests respectively, they are supposed to include the incoming
criteria. Subroutine OPTIMJ carries out counting operations and the like
so it probably requires some changes as well. No changes are necessary in
OPTIMJ provided the new decision criteria use in some way the number of
functional evaluations or the amount of time at work. These criteria are
already incorporated in the program by means of variables NEL and NELl and
vectors ISH and NT.

Core storage aspects were described briefly in the section en-
titled "Operation of GROPE".

It is understood that changes in the program must come together

with proper modifications in the FORTRAN COMMON statement. It is adviseble

-4y -

to follow very close the instructions concerning "The COMMOR Statement"
given in the IBM reference manuals whenever changes in the COMMON blocks
are to be introduced. The variables were assigned to each block (with some
symbolic neme) trying to reduce as much as possible the number of future
changes. Hence all the parameters associated with & particular subroutine,
for instance, are in one COMMON block (e.g., COMMON/BEP/ for subroutine
100K).

REMARK

————

The program a8 described in this paper is completely de-
bugged and has been tested with several sample problems. However, we have
not had enough experience as yet to permit us to make conclusive statements
about its work. A large number of different users with different areas of
interest are necessery now to improve the program and to meet the goals
proposed in our Introduction.

The code has been presented under the assumption that algebraic
expressions for the optimization function, the side conditions, and the
constraints are all available. This was for purposes of exposition only,
for all that is really necessary is to have subroutine EVALT--at least with
the present group of optimizing subroutines. For example, EVAIT might be a
simulation of some process that would yield functional values but without
having the function available in algebraic form at all. This aspect de-
serves careful attention while deciding about additional optimizing sub-
routines to be brought into GROPE. Most of the known optimizing procedures
require algebraic expressions for the objective function except the so~

called direct search techniques (LOOK, BEST UNIVAR, RANDOM, etc.). The need

- b5 -

for such algebraic expressions might very well restrict the actual scope
of GROPE, its generality and its flexibility.

There are several important aspects of GROPE deserving further
research. The choice of decision criteria for switching optimizing
subroutines is a crucial one. Also of great importance is the use of ac-
celerating convergence procedures both as components of the optimizing
subroutines and as independent devices to guide and link the work of
successive subroutines. A more flexible feature than the overleying
structures will become necessary with the addition of other optimizing
techniques. These are only a few among the problems we face in our future

research on GROPE.

APPENDIX A

*
Glossary of Parameters, Variables and Subroutine Names

Al (RCPRO),

A2 (RCPRO),
ADAPT,

Bl (RCPRO),

B2 (RCPRO),
BESV (ADAPT, OPTIMJ),
¢l (RCPRO),

c2 (RCPRO),
DAMBL (SNICOKN),
DECT,

DEL (1L00K),

DELMIN (LOOK),
DELR (1LOOK),
DELTA (LOOK),

EP1 (ADAPT),

EVALT,

Structure parameter of the Adaptive
Mechanism.

Structure Parameter of the Adaptive
Mechanisn.

Name of the subroutine handling the
Adaptive Mechanism of the program.

Structure parameter of the Adaptive
Mechanism.

Structure parameter of the Adaptive
Mechanism.

Vector yielding the best functional
value of present trisl.

Structure parameter of the Adaptive
Mechanism.

Structure parameter of the Adaptive
Mechanisnm. '

Relaxation parameter in linear and non-
linear programming problems.

Name of subroutine deciding whether or
not the end of trial has been reached.

Quantity specifying incremental change
in all varisables.

Minimum allowable value of DEL.
Ratio by which DEL is to be changed.
Quantity specifying slze of pattern move.

Parameter to define when a functional
value is better than the previous one.

Name of subroutine yielding functional
values.

*
The names in parentheses stand for the subroutine or subroutines

using the variables.

- 46 -

FMAX (ADAPT, OPTIMJ),

I1 (ADAPT),

IBEST (ADAPT),

1c1 (oPTIMY),

1c2 (OPTIMU),

ICODE (ADAPT, OPTIMJ),
IDECI,

IN (ADAPT),

INl (T0Ss),

IN2,

IN3,

IROUT (ADAPT),
ISH (OPTIMI),

ITRIA (ADAPT),

ITIME (IDECI, DECI),

J1 (ADAPT),

JRES (ADAPT),

- 47 -

Best functlional value of present trial.

Number of times the optimizing subroutines
have been unsuccessful in sequence.

Number of the trial at which the optimum
point was reached.

Variable to store clock readings
temporarily.

Varisble to store clock reasdings
temporarily.

Number of the optimizing subroutine in use
at any given time.

Name of subroutine initializing the
switching decision criteria.

Three-integer element vector to initiaslize
the pseudo-random number generator.

Three-integer element vector to initialize
the pseudo-random number generator.

Three-integer element vector to initialize
the pseudo-random number generator.
Available to the user.

Three~integer element vector to initialize
the pseudo-random number generator.
Available to the user.

Number of the optimizing subroutine in
use during trial IBEST.

Counting parameter denoting the number of
calls to each optimizing subroutine.

Number of the present trial.

Maximm allowed time per trial in each
optimizing subroutine.

Counting perameter indicating the number
of the optimizing subroutine selected for
next use.

Vector with the number of the subroutine
used in each one of the trials.

JSTI (ADAPT),

KEY (ADAPT, OPTIMJ),

K6, KT,

LE (OPTIMIZING SUB.),
Lgo (oPTIMY),
LIZ (ADAPT),

L1l (RCPRO),
L12 (EVALT),
113 (oUTPUT),
Lr4 (oPTIMU),
IL5 (SNICON),
LL6 (ADAPT),

IMDS (RCPRO),
10CK (ADAPT),
LOOK,

1OR (OPTIMIZING SUB.)
LPRMT,

IT (MAIN),

IT11 (MAIN),
ur22 (MAIN),

IT33 (MAIN),

- 48 .

Vector of "stimulus".

Vector denoting the condition causing
return from each one of the optimizing
subroutines.

Logical Tape Numbers.

Controls the entry point to the subroutine
after returning from OPTIMI.

Controls the entry point after returning
from DECIS.

Parameter controlling calls to optimizing
subroutine after unsuccessful use.

Controls the entry point to the subroutine.
Controls the entry point to the subroutine.
Controls the entry point to the subroutine.
Controls the entry point to the subroutine.
Controls the entry point to the subroutine.
Controls the entry point to the subroutine.

Identifies the adaptive mechanism used
whenever several are available.

Parameter controlling calls to optimizing
subroutines after umnsuccessful use.

Name of optimizing subroutine using pattern
search strategy.

Controls the entry point to the subroutine.

Neme of subroutine to read the parameters
of the adaptive mechanism in use.

Controls the entry point after coming from
SNICON.

Stores clock readings temporarily.
Stores clock readings temporarily.

Stores clock readings temporarily.

IUT (OPTIMIZING SUB.),

M (MAIN),
MCYCLE (RANDOM),

MCYCLO (SHRINK),
MRDTN (SATTER),

MXNEL (IDECI, DECI),
MXTIM (DECI, IDECI),
MXTRI (ADAPT),

N (MAIN),
NC (BATCHE),

NCODS (ADAPT, RCPRO),

NDECI (IDECI, DECI),

NDTN (SATTER),

NEL (OPTIMI),

NEL1 (OPTIMJ),

NGo (oprIMU),

NLOOK (OPTIMJ),

- b9 -

Exercises the required control to
ensure that the seme program parameters
are used in future cealls to the
optimizing subroutine, whenever so
desired.

Rumber of equations or inequations
in linear problems.

Maximum number of cycles the subroutine
can be used.

Maximum number of cycles to be performed.
Maximum number of cycles to be performed.

Maximum number of functional evaluations
allowed within a trial.

Maximum amount of time allowed for every
one trial.

Msximum number of trials to be
perfornmed.

Kumber of variables.
Kot included in the program yet.

Number of optimizing subroutines
available.

Identifies the criterion for switching
subroutines, whenever several are
available.

Maximum number of continuous changes
in direction accepted without significant
improvement.

Number of functional evaluations within
a trial.

Total number of functional evaluations.

Controls the entry point to the
subroutine.

Total number of calls to optimizing
subroutines.

NT (oPTIMU),

NTC (OPTIMIZING SUB.),
NTES (RANDOM),

NTI10 (MAIN),

NT1S (SATTER),
NTIME (MAIN),
NTNCOS (SHRINK),

NTNCYS (RANDOM),

NTSNC (MAIN),
NTOS (SHRINK),
NORVI (OPTIMIZING SUB.),

OMEGA (SNICON),

OPTIMJ,

OUTPUT,

PBESV (ADAPT, OPTIMJ),

PPMAX (ADAPT, OPTIMU),
PN (oPTIMU),

- 50 -

Total time spent by each optimizing
subroutine in each independent
problem.

Maximum number of varisbles to be
analyzed.

Maximum number of functional evalustions
within a cycle.

Stores clock readings temporarily.

Total number of functional evaluations
to be performed in a cycle.

Stores clock readings temporarily.

Maximum number of continuous cycles
accepted without significant
improvement.

Maximum number of continuous cycles
accepted without significant
improvement.

Maximum number of times subroutine
GNICON can be used.

Maximum number of functional evaluations
per cycle.

Order in which the variables will be
analyzed.

An exponential reduction factor taking
SHRUN to £ SHRUN when SNICON is called
more than once.

Rame of the subroutine calling the
different optimizing subroutines.

Name of the subroutine to print whenever
called most of the information available
at the calling time. :

Vector yielding best functional value
so far.

Best functional value so far.

Starting vector.

PNMAX (OPTIMIZING SUB.),
PNMIN (OPTIMIZING SUB.),

PROB (RCPRO),
RANDOM,

RCPRO,

RFMIT'S,

RISTK (SNICON),
RNB (ADAPT),
RO (SNICON),
RSDTA,

RWSUB,

SATTER,
SC(OPTIMIZING SUB.),
SHRINK,

SHRON (SHRINK),

SHRUN (LOCK),

SN (OPTIMU, EVAIT),

-51-

Upper limit for each variable.
Lower limit for each variable.

Present state probabilities of
the systenm.

Name of the optimizing subroutine
using the simple random strategy.

Neme of the subroutine to recompute

the state probebilities at the end
of each trial.

Neme of the subroutine to read variable
formats.

Maximum allowable error in satisfying
the linear inequalities in mathematical
programming problems.

Vector of random numbers.

Adjusting factor for TAU in mathematical
programming problems.

Name of the subroutine to read input
data.

Name of the subroutine to resd and
print out the names of the subroutines
used in the program.

Name of the optimizing subroutine using
Satterthwalte strategy.

Stores best functional value of present
cycle temporarily.

Name of the optimizing subroutine using
the shrinkage random strategy.

Fraction by which the operating space
is reduced after every complete cycle.

Adjusting factor for DELTA.

Functional value at any given time.

_52-

SNICON, Name of the subroutine which provides
means for repeating an optimization
calculation with altered parameter

values.

SP (OPTIMIZING SUB.), Stores best functional value of previous
cycle temporarily.

STEP (SATTER), Step size.

TAU (SNICON), Adjusting factor for the relaxation

perameter DAMBL, calculated for
maethematical programming problems

as a function of the actusl error and
the maximum permissible error.

TEMPE (MAIN), Vector of residuels in linear problems.

THETA (SNICON), An exponential reduction factor taking
DEIMIN to THETA*DEIMIN when SNICON is
called more than once in & linear
problem.

TOL (OPTIMIZING SUB.), Fraction of acceptance for improvement
in functional value between two consecutive
cycles of one optimizing subroutine.

TOLS (MAIN), Smallest error accepted in the solution
of systems of linear equations.

TOSS, Name of the subroutine to permute the
components of the vector NORVI randomly.

Ih .

APPENDIX B

Use of Control Parameters*

KR (LOOK)
KR € 0 Do not call TOSS
KR > 0 (Call TOSS
KR1 (EVALT)
KR1 < 0 Do not write out the basic information of the problem on hand
KRl > O Write out the previous information
KR2 To be used at the discretion of the user
KR3 To be used at the discretion of the user
KR4t (OPTIMIZING CODES)
KRt > 0 Call OUTPUT at the end of each cyecle
KRY < 0 Do not call OUTPUT
KRS (ADAPT)
KR5 < 0 Call OUTPUT at the end of each trial and print out
the program parameters.

KR5

]
(@]

Call OUTPUT at the end of each trial suppressing the print out
of the program parameters

KR5 > 0 Do not call OUTPUT
ggé (OPTIMIZING CODES)

KR6 < 0 Do not test for limits on variables

KR6 > 0 Test for limits

*The names in parenthesis stand for the subroutines using the control
parameter.

53

- 54 -

KR7 (OPTIMIZING CODES)
KRT < 0 Do not test for upper limits
KRT > O Test for upper limits
KR8 (MAIN)
KR8 Number of problems to be solved in a single computer run
KR9 (OPTIMIZING CODES)
KR9 < 0 Do not test for lower limits
KR9 > O Test for lower limits
KR10 (OPTIMIZING CODES)
KR10 < 0 Call OUTPUT after one internal stopping rule has been
reached apd print program parameters
KR10 = O Call Output after stopping rule has reached suppressing
the print out of program parameters
KR10 > O Do not call OUTPUT
KR11 (OPTIMIZING CODES)
KR11 < 0 Do not call TESTCO
KR1l > O Call TESTCO
KR12 (OPTIMU)
KR12 < 0 Do not call OUTPUT at the beginning of OPTIMU
KR12 > 0 Call OUTPUT
KR13 (MAIN)
KR13 < O Do not print out the residuals in linear problems
KR13 > 0 Print out the residuals
KR14 (RSDTA)
KR1k < 0 Print out the program parameters read in as data.

KR14 > 0 Do not print out the program parameters

_55-

KR15 (RSDTA)
KR15 < 0 Do not call RFMIS
KR15 > 0 Call RFMIS
KR16 (MAIN)
KR16 > 0 Call SNICON
KR16 < 0 Do not call SNICON
KR17 (OPTIMIZING CODES)
KR17T > 0 Call OUTPUT after each functional evaluation
KR17T < 0 Do not call OUTPUT
KR18 (OUTFUT)

KR18 < 0 Print out actual vector and functional value together

with the best previous ones

KR18 > 0 Do not print out the best previous values

KR19 (MAIN)
KR19 < 0 Do not print out the vectors of responses and stimuli
KR19 > 0 Print out the above information

KR20 (OPTIMU)

KR 20 < O Call OUTPUT at the end of OPTIMU whenever transfer
is caused by internal stopping rule of optimizing code
and print out program parameters

KR20 = 0 Call OUTPUT suppressing the print out of program parameters

KR20 > O Do not call OUTPUT at the end of OPTIMU

APPENDIX C

FIOW CHARTS

- MAIN PROGRAM

- 57 -

0

Initiglization
| CALL
| RWSUB
l
i
i
CALL CALL
RFMTS RSDTA
121
CALL
ADAPT
<
r&—(Is KR16 £ 0 % DL
1 ‘ 2 1
NP = NP + 1 CALL
| SNICON
PRINT
| TUNAL Go To (1,121),LT
OUTPUT

YES

Are there more problems?

NO

— — —

=)

- 58 -

77\

SUBROUTINE A DA PT O<
(EXECUTIVE ROUTINE)

t

GO TO (30,31),LL6

31

30

CALL
LPRMT

1
o -

o

LOR =

—

LOCK
KEY
LIz

[
(@

(LI]

H
lo¥e)

-

JL =1

GENERATE
RANDOM
NUMBERS

NO (Is P, (I)€ RNB (I)?

ICODE = J1

- 59 -

SUBROUTINE ADAPT
(EXECUTIVE ROUTINE)

' YES
NO C:[s LOCK(ICODE) = 0 2 \;
. 8
I1 =0
L1Z = 0.0 LIZ(ICODE) = LIZ(ICODE) + 1

WS 15 LIZ(ICODE) = 1 2 D—NQ»

160

1 -=-11+1

F_NO—'CIS 11 < NCODS ?)YES (b
10]

PRINT

HAVE
FAILED

P

JRES (ITRIA) = ICODE

CALL CALL
IDECI OPTIMU

SUBROUTINE A DA P T /j’_—L\
(EXECUTIVE ROUTINE) U

20 el
PFMAX = FMAX JSTI (ITRIA) = O
IBEST = ITRIA LOCK (ICODE)= O
PBESV(I) = BESV(I)
JSTI (I) = 1
LOCK = 1.0
LOCK(ICODE)= KEY(ICODE) KEY = 1.0
KEY(ICODE)= 1
(Initialization
after successful
trial).
PRINT
COMMENT
FATLURE
PRINT
COMMENT
SUCCESS
26]
CALL
OUTPUT
25
CALL
RCPRO
i
ITRIA = ITRIA + 1 24

PRINT

\ s ([) NO | COMMENT
CL}_ k Is ITRIA < MXTRI ? TRIALS

REACH

- 61 -

|65}
g
o]
&
3
H
&
O
Lav]
=3
H
(e

25

| GO TO (21,25), NGO

1k

GO TO (15,14), LGO -—

12

CALL
EVALT

:

NEL+1

NEL1 = NEL1+1

"

CALL
OUTPUT

25

CALL

OUTPUT

PRINT LOR
STOPPING LE(T)

RULE

|l—'l—‘
o

il

KEY(ICODE) = O

SUBROUTINE OPTIMU

10

CALL
EVALT

FMAX

PFMAX
PBESV(I)
BEVS(TI)

(Initialization)

SN
SN

PN(I)
PN(I)

il

il

CALL

OUTPUT

10

GoTo (1, 2, 3, 4), ICODE

CALL CLOCK
CALL RANDOM

ISH(ICODE) = ISH(ICODE) + 1

CALL CLOCK
NT(ICODE)

i}

(ICc1)

(1Cc2)

NT(ICODE) + IC2 - ICl

20

NLOOK =
NLOCK + 1

SUBROUTINE RANDOM

YES

.- 63 -

Initialize
Search
Perform NTES Save best
experiments point so
at random per far

cycle

STOP

Is the total
number of cycles
exceeded?

NO

Is this
cycle a
success?

NO

Save best
point so
far

SUBROUTINE S HR I NK

Initialize

Search

Compute
shrinkage
factor

Shrink
operating
space

Perform NTOS

experiments
at random

Save best
point so

per cycle

Is the total
YES | number of cycle

STOP

exceeded ?

Save best
point so
far

- far

Is this \
cycle a NO

success ?

SUBROUTINE L O O K

initialize

Search

Reduce

i Step
Size

i

Perform
Exploratory
Search

Is this a

success ?

)

Restore
last Base
Point

Had Pattern YES

B

SAVE BEST

point and

perform
Pattern Move

Move Jjust been
made ? }

NO

1

Can step
Size be
reduced %

NO

SEARCH
is
complete

‘ .

SUBROUTINE S A TTER

- 66 -

Initialize

Search

l

Mgke & ran-
dom step in
a random
direction

Is the
number
exceeded ?

NO

Make other
step in the
negative
direction

NO (Is this point

a
success ?

Is this point

total \
of tests

a
success ?

YES

Save previous
best
point

/ Is the total

N

Save previouJ
best

number of tests
exceeded 7

NO

Mgke other

step in the

same direc-
tion

point

APPENDIX D

FORTRAN IV LISTINGS

- 68 -

$JNB 01481, TIMF NN3, PAGFS N5N, CARNS 2NN, NAME ALRFRTO LFON,
STRETC FIRQTY Lty

.C MATN

80

COMMAN/QQA /KL KT

COMMNON/RABR /L L1oLL2sLL3sLL4sLLSoLLEsLORGLGNINGDSLF{20) oL sKFYi2),
2J1 9 T14NELSLMDSLLIZ(20)
COMMON/RRC/ICY1 4 IC243NTIMFGNTILIOWNLOOK GNT(20)41SHI(20)
COMMON/RABND/AL14R14Cl14A2,R2,4,C2
COMMON/BBF/ITRIA, ICONFE JNCODSLNNDFCT 4 TRFST,,T1R0UT
COMMNON/RRFE/JRFS(ENNY 3 JSTT(BOG)
COMMON/RRG/LOCK(2N) 4PPOR(20) 3 SPROR (201 4RNR {20 sLui {20)
COMMAN/RAH/NORVI (100) 4PN (10N 4 PAMAX (100) s PNMIN (10U) 9BFSVluud e i FMP
2E(100) 4PRESY(1N0N)

COMMON/RRTI/IN(R) 3 INTI(3) o IN2(3)3INT(3) e JIN(3) e INT(3) s IN2 ()4 INT(2)
COMMON/BRJ/KR4KRI yKR2 ¢ KR3 yKRU yKR53KRE9KRT 4 KRB IKROISKR1(9¥R11,4¥R12,
2KR134URI44KRIB4KRIAJKRIT4KR1I8,KR1G4XKR2D
COMMON/RRK/FNARM(12)4FORMTI(12)4FORM2(12) 4FORMR{12)4FORML 12) ,FORMSR
212) 4FORMA(12) 4FOARMT(12)4FORMB(12)4FORMA(12)4FNRMIQ(12)
('OMMnN/RQL/("\.UMTg! ARNOR

COMMNAN/RAM /N WM NC G NTENC GNTC GNENTC

(‘OMMr\N/nQ\l/MXTQY,MXML‘L,MXTIM

COMMNON/RAN/FMAX 4 DFMAX 4 SN

COMMNON/RRP/NDFL 4NEIMINGNDFLR$NDFLTA,SHRIN
COMMNN/RRNO/NTOS ¢MCYCLN 4 NTNCNOS 4 SHRON

COMMON/RRAR /NCY 4 NSF

COMMNAN/RAC /KL UNGK) § KRMN

COMMON/RRT /MRNDTN JNNTNZNTTS,STFD

COMMNON/ROB/MCYS gNTX

COMMNON/RRY/MOCYCLF JNTFS G NTNCYS

COMMNN/RRYW/ TS MT

COMMON/RRX/DAMBL 4 PFRR4RISTIK s 1 HFIA3OMEGA, jAUSRO
COMMON/RRZ/ED] 4 TOI 4 TOLS

COMMNAN/RCR/NCY1 9oNTX1 4151 4NFL1

- LT11=n

LT22=0

LT22=Nn .
CALL CLOCK(LTII)
NP=]

I1TRTA=1

NTIMF=0

LOR=1

CALL CLOCK (NTTIME)
Ké=="

K7==1

NFL =N

NFL1=0

IROUT=1

IBEST=0

NLOOK =0

1C1=n

1C?2=n

NTT1N=N

NENTC=0

NO 50 1=14,20
NT(1)=0
I1SH(TY=0
WRITF(K6+100)
WRITF(K6s114)NP

C READ AND WRITF RFFFRFNCF SURROUTINFS

GRND N7T13

- 69 -
CALL Pwera
- C RFAD GFNFRAL PRAGRAM ANN NDTTIMIZING CANEC NATA
CALL ReDTA
C CALL THE FXFCUTIVFE SURROUTINF
121 CALL ADAPT
C SHALL WF CALL SNICON
IF(KR1A,LFeN) AN TN

2 CALL SNICON
NENTC=NENT 4
LT=LT
O TO (14121), LT
1 NP=NP+1

C PRINT FINAL RESULTS
WRITF(K6,101)
WRITF(KA410R)PFMAXH(PRESV(T)aT=14N)
IF(KRIFLFNY) AN TH 21

C DRINT RFCTINIIALS TA | TNFAR CYQTFMCQ
WRITF(KASIIS)ITEMDE(T),T=14N)

21 IF(IROUT.GT«1) GO TN 10
WRITE(K64116)
GO TN 20

10 IROUT=IROUT-1
WRITF(KS541N4)TREST,IRNYT

20 WRITF(K64178)INLONOY

WRITE (KAsINKY((TCH(T)sT)yT=1,NCNANSH
ITRIL=ITRIA-]
IF(KR1IG.LF«N) GO TO 22
WRITF(K6&6+s110)(PRNR(TI)4I=1,NCONS)
WRITF(KGE6s111)(JUSTI(INsI=1ITRIL)
WRITF(K6e112)(JRFS(T)eI=14ITRIL)
2?2 CALL CLOCK(NTIIN)
NT IME=NTT1N=NTIMF
WRITF (KAsI1N2INTIMFEGZNFL]
WRITFE (KKs1NB)Y ((INT(TI14T)sT=1,NCONSY
WRITF(KKs112)
C DO WF HAYF MORE PRORLFMS IN THIS RUN
IF(NP.LESKRS8)Y GO TO 4
WRITF(KESIOO)I(INICTIYaI=093) o (INI{T)aT=143)Y{IN2(T)sl=1s3)s(IN3(I),]
23193,
WRITF(KAs11IN)(PRAR(T)9T=1sNCNHNS)
WRITF(KESITI)(JSTT({T) T=1,TTRIL)
WRITE(XE4I12)(URFS(T)eT=1sITRIL)
CALL CLOCK(LT22)
LT33=LT7T22 LT11
NPPP=NP-1
WRITE(KAs117)L.T32,NPPP
eTOP
10N FORMAT(IHN 444X e44H It N T V F R S AL ADADPT I VYVE 7 nDeEy
10y FORMAT (344N WITH THF FOLLOMING FINAL RFESHILTS)
102 FORMAT (21HN TOTAL FLAPSER TIMF T10,6H WITH 18,234 FUNCTIONAL FvaAL
SUATINNS)
103 FORMAT (24HN REST FUNCTIONAL VALUF Fl134,6/384Hn WIIH IHE FOLLOWING O
2PTIMIZING VFCTOR/(1HO 10E13.6))
104 FORMAT (37HO OPTIMUM POINT WAS REACHED AT TRIAL 15421H wIiH ROUIIN
2F NymmrR 185) :
1nNs FORMAT (12HN TOTAL TIMF [1N0,19H IN ROITINF NUMRFR 15)
104 FORMAT (19HN NUMRER NF TIMFR= T5,19H TN RAYTINF NIIMRER TH/)
108 FORMAT (34HN NPTIMIZING ROHTINFS WFRF FALLEN 185418H TIMES AQ FNLLN
2Ws=)
109 FORMAT (1HOs4H IN=3(2X416)/5H IN1=3(2Xs16)/5H IN2=3(2Xs16)/5H IN3=

111
111
112
112
114
118
116
117

23(2Xe16))

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(3240
(VY740
(19HN
(1H1)
(2840
(19H0
(36K0
(21HO

- 70 -

THE FINAL STATE PARAMETERS ARE/(2H 10F13,61))
LIST OF STIMULT/(1201H «511) 1)
LIST OF RESPANSES/(12(1H 4511)))

THIS 1S PRORLFM NUMRFER 14)

THF RFESIDUALS ARF/(IHO 1NF13,AV)

THE TNITIAL VALUF WAS NOT TMPRAVYED)

TOTAL FLAPSED TIME 110+s9H FOR |HE T4+49H PRORLEMS)

"SIBFTC RSDTA LIST
C RSDTA '
SUBROUTINE RSDTA
COMMON/BBA/K6yK7
COMMON/BBB/LLY oLL2 oL L3 4L L4 oLl 54LLE69sLORSLGOSNGOSLE(20)9sLTsKEY(20) s
2J1 911 sNELSLMDSHLIZ(20)
COMMON/BBC/ICloIC2sNTIMESNTI1IOsNLOOKSNT(20)sISH(20)
COMMON/BBD/A19B1sC1sA2+B2,4,C2
COMMON/BBE/ITRIASICODESNCODSsNDECI o IBESTSIROUT
COMMON/BBF/JRES(500)sJS5TI(500C)
COMMON/BBG/LOCK(20)»PROB(20)sSPROB(20) sRNB(20)LUT(20)
COMMON/BBH/NORVI(100) sPN(100)+sPNMAX(100)sPNMIN(100) +BESV(100) s TEMP
2E(100)sPBESV(100)
COMMON/BBI/IN(3)sINL(3)9IN2(3)sIN3(3)sJIN{3)sINL(3)sJIN2(3)9JIN3(3)
COMMON/BBJ/KRsKR1sKR2 9KR33KR4 9KR53KRESKRT4KRBIKRGsKR109KR11sKR12
2KR134KR149KR159KR163KR17sKR184KR199KR20
COMMON/BBK/FORM(12)sFORM1I(12)9sFORM2(12)+sFCRM3(12)sFORM4L&(12) sFORMS(
212)+sFORME(12)9sFORMT7(12)9sFORMB(12)sFORMG(12)sFORM1I0D(12)
COMMON/BBL/COUNT s LABCR
COMMON/BBM/NsMosNCyNTSNCyNTCoNSNIC
COMMON/BBN/MXTRI sMXNEL s MXTIM
COMMON/BBO/FMAX sPFMAX SN
COMMON/BBP/DEL yDELMINSDELRIDELTA s SHRUN
COMMON/BBQ/NTOSsMCYCLOsNTNCOS s SHRON
COMMON/BBR/NCY sNSE
COMMON/BBS/KLMNsK1 s KRMN
COMMON/BBT/MRDTNsNDTNSNTISHSTEP
COMMON/BBU/MCYSsNIX
COMMON/BBV/MCYCLEsNTESsNTNCYS
COMMON/BBW/ ISsM1
COMMON/BBX/DAMBLPERR4RISTKs THETAsOMEGA s TAUSRO
COMMON/BBZ/EP1sTOLsTOLS
COMMON/BCB/NCY1oNIX1sIS1eNELL
READ(K79100)KRIKR1 9sKR29KR3 9yKR4 9KRH59KRE 9KR7 sKRB89KRIsKR10sKR119KR12»
2KR134KR149KR159KR16sKR173sKR18sKR19sKR20sKR21sKR229KR239sKR24KR25
C SHOULD WE READ FORMATS ’
IF(KR15.LE«0) GO TO 3
4 CALL RFMTS
3 READ(K73s100)NsMyNCsNTSNCsNTC
READ(K74100)Y(NORVI(I)sI=1sN)
READ(K79100IMXTRI oNDECI o MXNEL sMXTIMeILMDSsLLI1sLL2sLL3sLL4sLLSsLL6Y
2LOR
READ(K79101)EP1sTOLSsTOLS
READ(K75103)(IN(I)sI=1s3)
READ(K79103)(IN1(I)sI=143)
READ(K79103)Y(IN2(I)sI=1+3)
READ(K79103)Y(IN3(1)sI=1+3)
READ(K79101)(PN(I)sI=1sN)
READ(K7+101)(PNMAX(I)sI=1sN)
READ(K75101) (PNMIN(I)sI=1sN)
READ(K74100)NCODS
READ(K79100)MCYCLESNTESsNTNCYS
READ(K79102)YMCYCLOSNTOSsNTNCOS s SHRON
READ(K79102)MRDTNsNTISsNDTNSSTEP
READ(K79101)DEL+DELRSDELMINSDELTASSHRUN
READ(K7+101)DAMBL s THETAsOMEGAs TAUYROWRISTK
C DO WE PRINT PROGRAM PARAMETERS
IF{KR14,GT.0) GO TO 2
WRITE(K6+104)

100
101
1C2
123
104
105

106
107

1C8
1C9
110
111
112
113
114

115

116

117

118

119
2

-T2 -

WRITE(K69119)KRyKR13KR23KR34KR4G3KR54KREsKRT7sKRB89sKRI$KR1I09KR11 sKR1
229KR139KR149KR159KR169KR174KR18sKR194KR20

WRITE(KS691035)NaMeNCsNTSNCHINTC

WRITE(K&69106) INORVI(I)sI=1,N)

WRITE(K69s1CT7TIMXTRI yNDECI sMXNEL sMXTIM4LMDS

WRITE(KEs108)EP1sTOLsTOLS

WRITE(KG6s109)(IN(I)sI=143)

WRITE(K69110)(INL(I)sI=143)

WRITE(KG6s111)Y(IN2(I)sI=143)

WRITE(K69112)(IN3(I)sI=1+3)

WRITE(KS6s113)Y(PN(I)sI=1oN)

WRITE(K69s114)MCYCLESNTESSNTNCYS

WRITE(KG69115)MCYCLOSNTOSsNTNCOS » SHRON

WRITE(KG69»116)MRDTNINTISsNDTNSSTEP

WRITE(KS69117)DELSsDELRSDELMINSDELTASHRUN

WRITE(K69118)DAMBL 9y THETA sOMEGAs TAUSROSRISTK

FORMAT (2413)

FORMAT(5E13,.6)

FORMAT(31I34E134,6)

FORMAT(316)

FORMAT (27HC PARAMETERS OF THE PROGRAM)

FORMAT (5H N= T4e2Xs4H M= J1442Xs5H NC= 14+2X98H NTSNC= I1492Xs6H N
2TC= 14) :

FORMAT (31H ORDER OF ANALYSIS ON VARIABLES/(3014))

FORMAT (9H MXTRI= 1542Xs8H NDECI= I1542X98H MXNEL= I592Xs8H MXTIM=
2 1592Xs7TH LMDS= I5)

FORMAT (7TH EP1l= El34692Xs6H TOL= E134692Xs7H TOLS= E13.6)

FORMAT (6H IN= 318)

FORMAT (7H INl= 318)

FORMAT (7H IN2= 318)

FORMAT (7H IN3= 318)

FORMAT (16H INITIAL VECTOR/(1H »10E13.6))

FORMAT (22H R A N D O M MCYCLE= [592Xs7H NTES= I592XsSH NTNCYS=]
25)

FORMAT (22H S H R I N K MCYCLO= I542Xs7TH NTOS= [5+2Xs9H NTNCOS= 1
2542X98H SHRON= E13,6)

FORMAT (21H S A T T E R MRDTN= 1592Xs7H NTIS= I592Xs7H NDTN= 15,
22Xs7H STEP= El1346)

FORMAT (15H L O O K DEL= E134692Xs7H DELR= E13e6s2X9y9H DELMIN= E1
234692X98H DELTA= El34692Xs8H SHRUN= E13.6)

FORMAT (33H PARAMETERS FOR RELAXATION OPTION/9H DAMBL= E13e692Xs
28H THETA= E13,692X+s8H OMEGA= E13e692X96H TAU= E1346/6H RO= E13460
32X9+8H RISTK= E13,6)

FORMAT (21H LIST OF CONTROL KEYS/(3014))

RETURN

END

- 73 -

/
"RIRFTC OINFCT LIST
c 1nErt
SURRNUTINF IDFCI
COMMNN/RRA/KE 4KT
COMMON/RAR /L LT oLL2 oL L34yl BSoLLEoslORILGNINGOSILEL20) oL ToKEY 2)y
2JV s T1 GNELGJLMNG, | T7(2N)
COMMNN/RALE /101 g 102 GJNTIMEGJNTTIINGNLONK JNT(20) s ISH{20N)
COMMAN/RRE/TTRT A, 1FANT JNCONS JNNFCT 4 TRF ST 1RANT
COMMNN/RCA/NIY T 4NTXT 9181 4NELT
NDFCT=NDECT
GO TO (1293944546)sNDECT
C DECINDING ON NUMRFER OF EVALIJATIONS

1 NFL=N
RDETURN

C NFEINTINGA NN TIMFE AT wWNRK

2 1TIME=0
RETURN

3 NDFCT=NDFCT
RETURN

4 NDECT=NDFCI
RETURN

S NRFCT=NRECTY
RFTIIRM

6 NDECT=NDFCT
RETURN

END

C STRFTC APTIMU! LICT
C NPT IMY

C SFT
Q
53

&8N

SYRRANITINE NADT TMY)
COMMNAN/RRA /KA KT

- T4 -

COMMON/RRR/LLTgLL2sLL3sLL4sLLSsLLE s .ORGLGNGNGOSLE(20) 4L T4KFVID),

2J1 s T14NFLSLMNGSHL 172 (20)

COMMON/RRC/TCYI o TC24NTIMEGNTTI1INGNLOOKSNT(20) 4 15H(20)
COMMON/RRFE/ITRIASTCONDE S NCODS S NDFCT 3 TRES | 5 TROUT
COMMON/RRG/LOCK(2N) 4PROR(2N) ,SPRNB(20) 4RNR(20) 4LUT (20)
COMMNAN/RRH/NNARYT (1NN) $DM1NNY) (PNMAX(10N) 3 DNMIN(100) ¢RFSY(100) 4 | FMP

2E(1INNY4PRFEQY(1AN)

COMMON/RR J/KRG¥RT ¢KR2 sk RI4KRL 4KRH5yKREJURT4KRByKRO 4RIV R119¥R12,
2KR134KR144KR15¢KR144KR179KR1I8,KR1Q4XR20
COMMNN/RRM/N GM g N 3y NTSNC 4 NTC 3 NENTIC

CCMMON/RBRO/FMAX 4 PFMAX 9 SN

COMMNN/BCR/NCYT ZNT X1, 151 WNFLT

LLa=LL4

GD TN (9417), L&

UP VECTORS LE AN LT
PO 53 I=1,NCADS
LE(T)=1

DO 50 I=1,NCONS
LUT(TY=n

C INTTTAL FUNCTINNAL FVALNATINN

C TNT

CALL FvaALT
KU=KR18

KR18=1

LL4=?

TTALI7F PARAMFTFERSG
FMAX=SN

- PFMAX=SN

g
b

10

DO 51 I=1eN
PRESY (T)Y=PN(T)
RESVIT)=DN(T)
TEIKR12) 10,410,411
CALL QUTOUT
KR1R=KU
1CODF=1CNANF

C CALL PRQODFR NDPTIMIZING CNDE

1

GO TO (142e254)41CODE

1C1=n

1C2=N

CALL cLocv (1))

CALL DANNAM
TSH{ICODFE)=TSH(ICODF)+1
CALL CLOCK(IC2)
NT(ICONF)=NT(ICONFE)Y+1(C2~1C1
GO TO 2n

1C1=n0

TC2=0

CALL FLOCK (171

CALL <SHRTNK

CALL CLOCK(IC?)
TSH{TICONRFE) =TSH({ICONF)+1
NT(ICODF)Y=NT(TCNANF)+T1C2=1C1
GO TO 20

1C1=n

1c2=N

- 75 -

CALL CLNCK(1C1)
CALL <ATTER
CALL TLOCK(TIC2)
ISH(TICONFEY=TSH(TICONF Y+
NT(ICODF)Y=NT(TCNDF)Y+I1C2-~-171
GO TOH 20
4 1C1=0
1r2=N
CALL CLOCK (101
CALL LOOK
ISHITICONFE)Y=TSH(TCNNEYH
CALL CLNCK(1IC2)
NT(ICODE)=NT(ICOHODFE)Y+IC2~1C1
20 NLOOK =NLOOK 41
NGO=NRN
C TF NAD 1S NNF TCQT NFATCINN ARITERTA ANN AANTTINIIE PRNOACFQC
C TF NGO IS TWD INTFRNA! STOPPING RULF CF OPTIMIZING CNONE OCYRRFND,
GO TN (219728) 4NGN
21 CALL DECIS
LGO=LGO
C IF LGO 1S ONF 1IsF SAMFE CODFE AGAIN
C 1F LGO IS TWN TPY SWITCHING CONES
GO TN (15414)4LGN
18 rALL FVvaLT
NEL=NFL 4
NFL1=NFLY Y
IF(KR20) 17416412

17 LL3=2

16 CALL oUTPUY

12 GO TO 10

25 TF(KR20Y) 42,447 44N

42 LL3=?

41 CALL OUTOPUT

40 WRITF(K643N)ICODFLITRIAZNFL

KEY(TCNDFE) =N
C TRY SWITCHING

14 - LOR=1
PO 54 T1=14NCODS
54 LE(T)Y=1
RFTURN
2N FORMAT (24HN STADDTINA RIILF NF CONF T&,27H HAQ BFFN RFACHEN AT TOTAL

2 15,6H WITH I8,23H FUNCTIONAL EVALUATIONS)
END

- 76 -

$IBFTC DECIS LIST

p
C DECIS

SUBROUTINE DECIS

COMMON/BBA/K6E 4KT

COMMON/BBB/LLY oLL2sLL3oLL4yLLS5sLLOESLCRILGOYNGOSLE(20)sLTsKEY(20)
2J1 11 oNELSLMDSHLIZ(20)
COMMON/BBC/ICY s IC2sNTIMESNTI1IDsNLOOKSNT(20)sISH(20)
COMMON/BBE/ITRIAICODEsNCODSsNDECI S IBEST S IROUT
COMMON/BBN/MXTRI s MXNEL yMXTIM

NDECI=NDEC!

GO TO (1l92+3949596)9sNDECI

C DECIDING ON NUMBER OF EVALUATIONS

1 IF(MXNELo.LTSNEL) GO TO 11
10 LGO=1
RETURN
C DECIDING ON TIMFE AT WORK
11 LGO=2
RETURN
2 IF(MXTIMeLTLITIME) GO TO 21
20 LGO=1
RETURN
21 LGO=2
RETURN
3 NDECI=NDECI
RETURN
4 NDECI=NDECI
RETURN
5 NDECI=NDECI
RETURN
6 NDECI=NDECI
RETURN

END

- 77 -

" $IBFTC RCPRO LIST

C RCPRO
SUBROUTINE RCPRO
COMMON/BBA/K69KT
COMMON/BSB/LL1sLL29LL3sLL4sLLSsLLOEsLORSLGOSNGOSLE(20)sLT9sKEY(20)

2J1s11sNELSLMDSHLIZ(20)

COMMON/BBD/A1+B1sC15A25B24C2
COMMON/BBE/ITRIAs ICODEsNCODSsNDECI s IBEST s IROUT
COMMON/BBF/JRES(500)9JSTI(500)
COMMON/BBG/LOCK(20)9PROB(20)sSPROB(20) sRNB(20)sLUT(20)
LMDS=LMDS
GC TO (19s2939495)sLMDS

C FLOOD'S STCCHASTIC LEARNING MODEL

1 LL1=LL1
GO TO (70+80)sLL1

70 ZD1=1.0/FLOAT(NCODS-1)
2D2=140/FLOAT(NCODS-2)
AAl=A1-81

EE1=(1.0-81-Cl)%*2D2
CCl=(1.C—-A1)%ZD1-EE1
DD1=C1-FE1

AA2=A2-B2
EE2=(10-B2-C2)%Z2D2
CC2=(1.0-A2)*ZD1-EE2

DD2=C2-EE2

DO 10 I=14NCODS
o PROB(I)=SPROB(T)
8C NIT=USTI(ITRIA)

JAS=JRES(ITRIA)
ROS=PROB(JAS)
IF(NIT-1) 28,22,28

22 TEMP=CC1#ROS+EE1
Wa=DD1
GO T0 25

28 TEMP=CC2#ROS+EE?2
W4=DD2

25 W1=0C,"

DO 23 J=1sNCODS
IF(J=JAS) 21+23,21
21 PROB(J)=W4*PROB(J)+TEMP
W1=W1+PROB(J)
23 CONTINUE
PROB(JAS)=140-Wl1
LL1=2
RETURN
2 LL1=LL1
RETURN
3 LL1=LL1
RETURN
4 LLl=LL1
RETURN
5 LL1=LL1
RETURN
END

$IBFTC RWSUB LIST
C RWSUB
SUBROUTINE RWSUB

COMMON/BBA/K6 KT

3 READ(K751)1
WRITE(K641)1T
IF(1)29354

2 CALL SYSTEM

1 FORMAT(1HOsI5455H0
2)

4 RETURN

END

- 78 -

-79 -

$IBFTC RFMTS LIST
C RFMTS
SUBROUTINE RFMTS
COMMON/BBA/K6 9 K7
COMMON/BBK/FORM(12)sFORM1(12)+sFORM2(12)9sFORM3{12)sFORM4(12) sFORMS(
212)9FORM6E(12) sFORMT(12) 9FORMB(L2) s+FORMyY(12£)s+FORM1I0(12)
READ(K741)FORM
READ(K7,1)FORM]1
READ({K7+1)FORM2
READ(K751)FORM3
READ(K74s1)FORM4
READ(K74+1)FORM5
READ(K74+1)FORM6
READ(K751)FORM7
READ(K741)FORMB
READ(K74s1)FORMS
READ(K74+1)FCRM10
1 FORMAT(12A6)
RETURN
END

"$IBFTC ADAPT LIST
C ADAPT
SUSRCUTINE ADAPT
COMMON/BBA/K6 KT
COMMON/BBB/LLLsLL2sLL3sLL4sLLSsLLESLORILGOINGOSLE(20)sLTsKEY(20),
2J1 911 4NELSLMDSsLIZ(20)
COMMON/BBE/ITRIA,ICODE s NCODSsNDECI s IBEST»IROUT
COMMON/BBF/JRES(500)9JSTI(500)
COMMON/BBG/LOCK (20) sPROB(20)»SPROB(20) sRNB(20)sLUT(20)
COMMON/BBH/NORVI(1C0) sPN(100) sPNMAX(100)sPNMIN(100) sBESV(100) s TEMP
2E(1C0)sPBESV(100)
COMMON/BBI/IN(3)9INL(3)sIN2(3)sIN3(3)sJIN(3)sJINL(3)sIN2(3)sJN3(3)
COMMON/BBJ/KR9KR19KR29KR3 9KR4 4 KR59KR6E 9 KR7 9KR8 sKRIsKR10sKR119KR12
ZKR133KR149KR154KR169KR179sKRLIBsKR1IY9KRL0
COMMON/BRM/NsMyNCosNTSNCHNTCsNSNIC
COMMON/BBN/MXTRI s MXNEL ¢ MXTIM
CCMMON/BBO/FMAX yPFMAX 9 SN
COMMON/BBZ/EP1sTCOLsTOLS
COMMON/BCB/NCY1sNIX19IS1eNEL]
LLée=LL6
GO TO (30+31), LL6
C READ PARAMETERS FOR LEARNING MODEL
30 CALL LPRMT
C INITIALIZE TRIALS COUNTING AND LOCK VECTOR
31 I11=0
LOR=1
DO 1 J=1sNCODS
KEY(J)=1
LIZ(J)=0
LOCK(J)=1
CALL RAMZA(IN)
GENERATE NCODS RANDOM NUMBERS
DO 2 J=1,NCODS
2 RNB(J)=RAM2B(0)
CALL RAM2C(UIN)
DO 3 J=1s3
3 INCJ)=UN(I)
J1l=1
C IS THE PROBABILITY GREATER THAN THE RANDOM NUMBER
6 IF(PROB({J1)«CTeRNB(J1)) GO TO 5
4 J1=J1+1
IF(NCODSeGEsJ1) GO TO 6
GO 10 7 '
C ONE OPTIMIZING CODE IS SELECTED
5 I1CODE=J1
C WAS THE SELECTED CODE UNSUCCESSFUL IN PREVIOUS TRIALS
IF(LOCK(ICODE)) 1C00+8,59
8 LIZ(ICODE)=LIZ(ICODE)+1
IF(LIZ(ICODE)-1) 15C»16Cs4
160 11=11+1
IF(NCODS.GTeI1l) GO TO 4

N~

10 WRITE(K691C0)
RETURN
9 11=0
DO 40 I=1sNCODS
43 LIZ(I)=0

C BUILD UP VECTOR OF RESPONSES
JRES(ITRIA)=1CODE

- 81 -

(@

INITIALIZE DECISION CRITERIA
CALL IDECI
CALL FOR OPTIMIZATION PROCESS
CALL OPTIMU
C IS THIS TRIAL'S RESULT RETTER THAN PREVIOUS BEST ONE
IF((FMAX+FP1)~-PFMAX) 20s21,21
C TRIAL'S RESULT IS BETTER, BUILD UP STIMULI VECTOR
2¢C PFMAX=FMAX
IBEST=ITRIA
IRCUT=ICODE+1
DO 27 I=1sN
27 PBESV(I)=BESV(I])
JSTI(ITRIA)Y=1
DO 22 J=1,NCODS
22 LOCK(J)=1
LOCK(ICODE)=KEY(ICODE)
KEY(ICODE)=1
WRITE(K6,101)ICODESITRIAZNEL

@

GO TO 23
C TRIAL'S RESULT IS NOT BETTER
21 JSTI(ITRIA}=0

LOCK(ICODE)Y=0
DO 28 I=1sNCODS
28 KEY(I)=1
WRITE (K6s102)ICODEs ITRIASNEL
IF(KR5) 23426+25

23 LL3=2

26 CALL OUTPUT

C RECOMPUTE STATE OF THE SYSTEM AT THE END OF TRIAL
25 CALL RCPRO

ITRIA=ITRIA+1
C IS THE NUMBER OF TRIALS LESS THAN THAN MAXIMUM ALLOWED
IF(MXTRI+GE.ITRIA) GO TO
24 WRITE(K65,103)MXTRI
RETURN
100 FORMAT(38HO ALL THE OPTIMIZING CODES F A I L E D)
101 FORMAT(21HC THE USE OF ROUTINE 15,29H HAS BEEN A SUCCESS IN TRIAL
215 s6H WITH 18,23H FUNCTIONAL EVALUATIONS)
102 FORMAT(21HO THE USE OF ROUTINE 15,29H HAS BEEN A FAILURE IN TRIAL
215 s6H WITH 18s23H FUNCTIONAL EVALUATIONS)
103 FORMAT(24H0 THE MAXIMUM NUMBER OF 15,24H TRIALS HAS BEEN REACHED)
150 WRITE(K&sl51)
151 FORMAT (47HO ERROR.LIZ IS SUPPOSED TO BE GREATER THAN ZERO)
GO TO 152 -
1000 WRITE(K6,104)
104 FORMAT (41HO ERRORGVECTOR LOCK HAS NEGATIVE ELEMENTS)
152 CALL DUMP
sToOP
END

- 82 -

$IBFTC LPRMT LIST
C LPRMT

1C1

SUBROUTINE LPRMT

COMMCN/BBA/Kb oK 1

COMMON/BBD/A198B1sCLlsAziBLrLc
COMMON/BBE/ITRIAsICODEZNCODSINDECI»IBESTSIROUT
COMMON/BBG/LOCK(20)sPROB(20)sSPROB(20) sRNB(20) sLUT(20)
READ(KT745101)(SPROB(I)sI=1,sNCODS)
READ(KT75101)A19819C19A24R2,C2

DO 1 J=1,NCODS

PROB(J)=SPROB(J)

FORMAT(5E13.6)

RETURN

END

-83-

- $1BFTC TOSS LIST
C TCSS
SUBROUTINE TOSS
COMMON/BBA/K6 K7
COMMON/BBH/NORVI(100)sPN(100)sPNMAX(100)sPNMIN(100)sBESV(100)sTEMP
2E(100)sPBESVI(100)
COMMON/BBI/IN(3)YsINI(3)9IN2(3)sIN3(3)sJIN(3)sJINL(3)9UN2(3)9sIN3(3)
COMMON/BBM/NsMeyNCoyNTSNCyNTC9eNSNIC
DIMENSION INOR({100)
CALL RAM2A(IN1)
J=1
R1=RAM2B(0)
R2=N
IA=R2%R1
IF(1A)35420421
20 IA=TA+1
21 INOR(1)=1A
DO &4 J=24N
R1=RAMZ2B(0)
1A=R2#*R1
IF(1A)35,30,31
30 TIA=1A+1
31 INOR(JYI=]A
IF(INOR(J)Y-=N)6s6s11
11 INOR{JY)=1
JS=J-1
DO 7 K=1,JS
IFCINOR(J)I-INOR(K))T79997
9 INOR(J)I=INOR(J)+1
IF(INOR(J)I-N)B96910
10 INOR(J)=1
GO TO 6

wm O

-7 CONTINUE

4 CONTINUE
GO 70 100

35 MI1SS$=10000
WRITE(K6s40)MISS

40 FORMAT(9HO MISS IS 16)
CALL ERROR

100 DO 101 J=1sN
I1S=INORI(J)
NORVI(J)=1S

101 CONTINUE
CALL RAM2C(JUN1)
DO 102 J=1,3

102 IN1(J)=JN1(J)
RETURN
END

$IBFTC OUTPUT LIST
C OUTPUT

SUBROUTINE OUTPUT

COMMON/BBA/K6 KT
COMMON/BBB/LL1sLL2sLL3sLL4sLL59LLEYLORSLGOSNGOSLE(20)sLTHKEY(20)
2J1sI11sNELSLMDSSLIZ(20)

COMMON/BBE/ITRIA» ICODEsNCODSINDECI 9 IBEST »IROUT

COMMON/BBH/NORVI (100) sPN(100) s PNMAX(100) sPNMIN(100) sBESV(100) s TEMP
2E(1CO)sPBESV(100)
COMMON/BBJ/KR9KR1 3KR2 9sKR3 KR4 sKR59KR69sKR7 9KRBsKRIsKR10sKR11sKR12)
2KR139KR149KR159KR169KR179KR189KR19sKR20

COMMON/BBL /COUNT s LABOR

COMMON/BBM/NsMaNCyNTSNCsNTCsNSNIC

COMMON/BBO/FMAX s PFMAX s SN

COMMON/BBP/DEL s DELMINSDELRSsDELTA » SHRUN

COMMON/BRR/NCY sNSE

COMMON/BBU/MCYS,NIX

COMMON/BBW/ 15sMI

COMMON/BCB/NCY1sNIX1sIS1eNELL

C PRINT ACTUAL EVALUATION

WRITE(K69100)SNs (PN(KA) sKA=1sN)
WRITE(K69106) ICODEsNEL9NEL1

C SHOULD WE PRINT PREVIOUS BEST RESULTS

10
11
'12
13

14

100
101
1C2
103
104
105

106

IF(KR18.GTW40) GO TO 2

WRITE(K69101)FMAX s (BESV{KA) sKA=14N)
WRITE(K69102)PFMAXs (PBESV(KA) sKA=19N)

GO TO (3,4)s LL3

LF=1CODE

GO TO (10+11912913514915)s LF

WRITE(K6s103)ICOUNTsIS1

GO T0 3

WRITE(K6s103)COUNTsNCY1

GO TO 3

WRITE(K6s104)COUNTNIX1

GO TO 3

WRITE(K69s105)COUNTsDEL

GO T0O 3

LF=LF

GO TO 3

LF=LF

LL3=]

RETURN

FORMAT (25H FUNCTIONAL VALUE IS NOW E13.6/738H WITH INDEPENDENT VAR
2IABLES AS FOLLOWS/{1H 10El3.6))

FORMAT (34H BEST FUNCTIONAL OF PRESENT TRIAL E13.6/738H WITH INDEPE
2NDENT VARIABLES AS FOLLOWS/(1H 10E1346))

FORMAT (42H BEST FUNCTIONAL VALUE OF PREVIOUS TRIALS E13.6/38H WIT
2H INDEPENDENT VARIABLES AS FOLLOWS/(1H 10E13.6))

FORMAT (34H TOTAL NUMBER OF CYCLES PERFORMED El3.6/726H PROCESS STO
2PPED IN CYCLE 1I5)

FORMAT (38H TOTAL NUMBER OF CHANGES IN DIRECTION El13¢6/39H WITH A
6 TOTAL OF EXPERIMENTS EQUALS TO I5)

FORMAT (27H NUMBER OF CYCLES EXECUTED El3.,6/17H FINAL STEP SIZE E1
2346)

FORMAT (14HO CODE IN USE l4+6H WITH 18,23H FUNCTIONAL EVALUATIONS/
247H ACCUMULATED FUNCTIONAL EVALUATIONS UP TO NOW I8)

END

- 85 -

$IBFTC SNICON LIST
C SNICON
SUBROUTINE SNICON
COMMON/BBA/K6sKT
COMMON/BBB/LL1sLL2sLL3sLL4sLLSsLLOEILORYLGOINGOSLE(20) sLTsKEY(20) s
2J19I19NELILMDSsLIZ(20) ’
COMMON/BBH/NORVI(100) sPN(100) s PNMAX(100) sPNMIN(100)sBESV{100)sTEMP
2E(100)sPBESV(100)
COMMON/BBJ/KRsKR19KR2 9KR39KR4 s KR59KREsKRT7sKRB8 sKRIIKR109KR11sKR12s
2KR133KR149KR159KR16sKR179KR189KR199KR20
COMMON/BBM/NyMyNCsNTSNCyNTCosNSNIC
COMMON/BBP/DEL sDELMINSDELRsDELTA» SHRUN
COMMON/BBX/DAMBL s PERRYRISTK s THETAsOMEGA s TAUSRO
LL5=LL5
GO TO (1s2)s LLS
C START FROM FARTHEST POINT
1 DO 3 I=1,N
IF(PBESV(I)eLTeOe5%PNMAXI(]I)) GO TO 12
PN(T)=PNMIN(I)+0,0005
GO 70 3
12 PN(TI)=PNMAX(1)-0,0005
3 CONTINUE :
IFCNSNIC.LENTSNC) GO TO 16
LT=1
RETURN
16 WRITE(K6+100)
LT=2
LL6=2
LL4=1
RETURN
C RELAXATION SCHEME
2 IF(PERReLESRISTK) GO TO 21
DEL=DELMIN
DELMIN=DELMIN®#THETA
DELTA=DELTA*THETA
SHRUN=SHRUN#OMEGA
DAMBL=DAMBL*(PERR/RISTK)*TAU
TAU=TAU*RO
IF(NSNICeGT«NTSNC) GO TO 21
WRITE(K65101)
WRITE(K6+102) DELDELMINSDELTAsSHRUN,DAMBL
DO 14 J=1sN
14 PN(J)y=PBESV(J)
LT=2
LL6E=2
LL4=1
RETURN
21 LT=1
RETURN
100 FORMAT (50H0 NEW OPTIMIZATION CALCULATION FROM FARTHEST POINT)
101 FORMAT (46H0 PARAMETERS WERE CHANGED AND THE NEW ONES ARE)
102 FORMAT (7H DEL= E13¢692X99H DELMIN= E13¢692X98H DELTA= E134652X»
28H SHRUN= E13.,6/728H NEW RELAXATION PARAMETER= El1346)
END

“SIBFTC EVALT LIST
C EVALT
SUBROUTINE EVALT
COMMON/BBA/K6sKT
COMMON/BBB/LLY1 sLL2sLL3sLL4sLLSsLLEILORILGOINGOSILE(20)sLTHsKEY(20)
2J1 911 4NELWLMDS,LIZ(20)
COMMON/BRH/NORVI(100) sPN(100) s PNMAX(100) sPNMIN(1C0)sBESV(100) s TEMP
2E(100)sPBESV(100)
COMMON/BBJ/KR9yKR]1 $KR2 sKR3 yKR4 s KR53 KRE63KR73KR89KRIGSKR109sKR119KR12
2KR13,KR149KR159KR163sKR179sKR18sKR19sKR20
COMMON/BBK/FORM(12)9sFORM1(12)sFORM2(12)9sFORM3(12)sFORM4(12)sFORMS(
212)sFORME(12)+sFORMT(12)+4FORMB8(12)+sFORMS(12)sFORM10O(12)
COMMON/BBM/NsMyNCaNTSNCoNTCsNSNIC
COMMON/BBO/FMAXsPFMAX 9SN
COMMON/BBX/DAMBL yPERRSRISTKs THETA»OMEGA» TAUSRO
DIMENSION A(50950)9B(50+50)sC(100)9E(100)sPSQ(100)sEVECT(100)
LL2=LL2
GO TO (1s2)s LLZ2
1 WRITE (K69 FORM)
DO 6 I=1,N
DO 6 J=1sN
A(lsJ)=0.0
6 B(IsJ)=0.0
DO 7 J=1sN
C(J)y=0.0
7 E(J)=0.0
LL2=2
READ(K7sFORM1) ((A(IsJ)sJ=1sN)sI=1sM)
READ(KT7+FORMIN{(B(IsJ)eJ=1sN)s1=1+6)
READ(K7sFORM1)(C(I)sI=1sN)
READ(K79FORM1I(E(I)}sI=1sN)
IF(KR1e«LE«Q) GO TO 2
WRITE(K&6sFORM2)
WRITE (K6sFORM3)
WRITE (K6sFORM4)
WRITE(KG6sFORMS) (C(T)sI=11+6)
WRITE(K64FORM6E)
WRITE(KG6sFORMS)((B(IsJ)sJ=1s6)391=2+6)
WRITE(K6&69yFORMT)
WRITE(KG6sFORMB)Y(E(I)sI=1+6)
WRITE (K&9FORM8)
WRITE(KG69yFORMS)}((A(I3J)9J=196)91=1s10)
2 RESID=040
SN=0.0
OBJEC=0.,0
PN(11)=1.0 .
DO 5 I=1sM
TEMPE(1)=040
DO 8 J=1sN
TEMPE(I)=TEMPE(I)+A(IsJI*PN(J)
8 CONTINUE
PSQ(1)=TEMPE(T)*TEMPE(I)
5 RESID=RESID+PSQ(1I)
PERR=RESID
RESID=DAMBL*RESID
CATS=060
DOGS=0.0
PIECE=0,40

10

- 87 -

DO 3 J=2sN
PIECE=PIECE+C(J)*PN(J)
DO 10 J=2N

DO 10 I=2»N
DOGS=DOGS+B (I s J)*¥PN(J)*PN(I)
DO 9 J=2yN
CATS=CATS+E(J)*¥PN(J) *#%#3
OBJEC=PIECE+DOGS+CATS
SN=RESID+0BJUEC

RETURN

END

$IBFTC SYSTEM LIST

C SYSTEM
SUBROUTINE SYSTEM
STOP
END

$IBFTC ERROR LIST

C ERROR
SUBROUTINE ERROR
CALL Dump
STOP
END

$IBFTC CLOCK LIST

C CcLocCkK
SUBROUTINE CLOCK(IDUS)
CALL TIME (ARCO,IDUS)
RETURN
END

$IBFTC TESTCO LIST

C TESTCO
SUBROUTINE TESTCO
RETURN
END

- 89 -

$IBFTC LOOK LIST
C LOOK

250
100
200

231
252

SUBROUTINE LOOK

COMMON/BBA /K6 sK7
COMMON/BBB/LL1sLL23sLL3sLL4sLL5sLL6sLORSLGOINGOsLE(20) sLTsKEY(20) s
2J1511sNELsLMDS,LIZ(20)
COMMON/BBE/ITRIAs ICODE yNCODSsNDECI s IBEST»IROUT
COMMON/BBG/LOCK (20) s PROB(20) s SPROB(20) sRNB(20) sLUT(20)
COMMON/BBH/NORVI (100) »PN(100) »PNMAX (100) sPNMIN(100) »BESV (100} s TEMP
2E(100)sPBESV(100)
COMMON/BBJ/KR»KR1 sKR2 sKR3» KR4 s KRS sKR6 sKR7 s KRS sKRO sKR10 sKR11sKR1 2
2KR13,KR143KR153KR16sKR175KR18sKR19sKR20

COMMON/BBL /COUNT s LABOR

COMMON/BBM/NyMsNCyNTSNCsNTCsNSNIC

COMMON/BBO/FMAX s PFMAX s SN

COMMON/BBP /DEL yDELMINs DELR s DELTA s SHRUN

COMMON/BBS /KLMNsK 1 sKRMN

COMMCN/BBZ/EP1,TOLsTOLS

COMMON/BCB/NCY1sNIX1sIS1sNELL

DIMENSION PC(100)sPP(100)sPA(100)sDP(100)sSIGN(100)

LOR=LOR

GO TO (250,200), LOR

WRITE (K65100)

FORMAT (20HO L O O K IS CALLED)

LA=LE (&)

IF(KR17) 25252525251

CALL OUTPUT

LA=LA

GO TO (13575119259299335171941)s LA

C EXPLORATORY SEARCH

1

FMAX=PFMAX
SP=FMAX

C SC 1S THE BASE POINT

700

2
102

3

SC=FMAX
DO 700 KA=1»sN
BESV(KA)=PBESV{KA)
PN(KA)=BESV(KA)
COUNT=0.0
LOR=2
NGO=1
PM=DELTA
IF(LUT(ICODE)«GT«0) GO TO 102
LUT(ICODE)=1

DO 2 KA=1,sN

DP (KA)=DEL* (PNMAX (KA)=PNMIN(KA))
SIGN(KA)=1,

PC(KA)=PN(KA)

NOS=1

K=NORVI(NOS)

C FIND A NEW POINT IN THE POSITIVE DIRECTION OF THE KTHe VARIABLE

PN(K)=PN(K)+DP(K)*SIGNI(K)

C STORE THE NEW POINT IN PA

PA(K)=PN(K)

LE(4)=2

IF(SIGN(K)) 10y 42y 5

IF(KR7) 69 65 92
IF(PN(K)-PNMAX(K)) 69494
PN(K)=PNMAX (K)

IF(KR11) 40094005401

401 KRMN=1

CALL TESTCO

KLMN=K1

GO TO (400+35164522)sKLMN
400 RETURN

7 IF{SN-SP) 13, 8,8
C STEP IN THE POSITIVE DIRECTION WAS UNSUCCESSFULe TRY TWO STEPS IN -
8 PN(K)=PA(K)—2+#DP(K)*SIGN(K)
PA(K)=PN(K)
LE(4)=3
IF(SIGN(K)) 59 42y 10
10 IF(KR9) 6y 6y 93
93 IF(PNMIN(K)=PN(K)) 63 99 9
9 PN{K)=PNMIN(K)
GO TO 6
11 IF(SN-SP) 125, 12y 12
C POINT IN — TWO STEPS WAS UNSUCCESSFUL. RESTORE THE INITIAL POINT
12 PN(K)=PA(K)+DP(K)*SIGN(K)
GO TO 14

C BETTER POINT IS FOUND IN - TWO STEPS. KEEP PROCESS GOING
125 SIGN(K)==SIGN(K)
C BEST VALUE FROM EXPLORATORY SEARCH IS SP

13 SP=SN
FMAX=5P
BESV(K)=PN(K)
14 IF(NOS-N) 15, 16 16
15 NOS=NOS+1
GO 70 3
C COMPARE BREST EXPLORATORY RESULT (SP) AGAINST BASE POINT (SC)
16 IF(SP-SC+TOL*ABS(SC)) 17422422
17 LE(&4)=7
NOS=1
GO TO 200
C SP 1S BETTER THAN BASE POINT SC
171 SC=SP
FMAX=5SC

C TRY A PATTERN MOVE
DELTA=DELTA*SHRUN
COUNT=COUNT+1.0
DO 500 KA=1,N

C STORE OLD BASE POINT IN PP

PP(KA)=PC(KA)
C ESTABLISH A NEW BASE POINT
PCIKA)=PN(KA)
BESV(KA)=PC(KA)

C CALCULATF VARIABLFS AFTER PATTERN MOVE
PN(KA)=PN(KA)*DELTA-PP (KA)
IF(KR6) 21y 21y 95

95 IF(KR7) 18, 18, 96
96 IF(PN(KA)-PNMAX(KA))600+20+20
600 IF(KR11l) 18,518,501
18 IF(KR9) 21y 21, 97
97 IF(PNMIN(KA)-PN(KA))601s 19y 19
601 IF(KR11) 500+500,501
19 PN(KA)=PNMIN(KA)
GO 70 21
20 PN(KA)=PNMAX(KA)
21 IF(KR11) 500550045501

501 KRMN=1
CALL TESTCO

-91 -

KLMN=K]
GO TO (40093+16922+8+245500518) sKLMN
500 CONTINUE
IF(KR) 300,300,301
301 CALL TOSS
300 NOS=1
IF(KR4) 2554255,254
254 CALL OUTPUT
255 LE(4)=4
RETURN :
C POINT AFTER EXPLORATORY SEARCH IS NOT BETTER THAN BASE POINT
C IS THE STEP SIZE SMALLER THAN LIMIT

22 IF(DEL-DELMIN) 23, 23, 24
23 NGO=2
LE(4)=8
IF(KR10) 60561462
60 LL3=2
61 CALL OUTPUT
62 RETURN
C DECREASE STEP SI1ZE
24 DEL=DEL*DELR
DO 241 KA=1,N
241 DP (KA)=DEL*(PNMAX(KA)=PNMIN(KA))
GO TO 39
C START A NEW EXPLORATORY SEARCH
25 K=NORVI (NOS)
SP=SN
26 PN(K)=PN(K)+DP(K)*¥SIGN(K)
PA(K}=PN(K)
LE(4)=5
IF(SIGN(K)) 32, 42, 28
28 IF(KRT) 65 6y 98
58 IF(PN(K)-PNMAX(K)) 69 27y 27
27 PN(K)=PNMAX({K)
GO TO 6
29 IF(SN-SP) 34, 30s 30
C POINT FROM POSITIVE STEP IS NOT BETTERe TRY TWO -~ STEPS
30 PN(K)=PA(K)-2+%#DP(K)*SIGN(K)
PA(K}=PN(K)
LE(&4)=6
IF(SIGN(K)) 28y 425 32
32 IF(KRS) 69 6599
99 IF(PNMIN(K)=PN(K)) 65 31y 31
31 PN(K)=PNMIN(K)
GO TO 6
33 IF(SN-SP) 335, 38, 38

C POINT FROM TWO - .STEPS IS BETTER. KEEP PROCESS GOING

335 SIGN(K)==SIGN(K)
C POINT FROM POSITIVE STEP IS BETTER. KEEP PROCESS GOING

34 SP=5N

FMAX=SP

BESV(K)=PN(K)
35 IF(NOS-N) 36 37y 37
36 NOS=NOS+1

K=NORVI (NOS)

GO TO 26

37 IF{SP=-SC+TOL*ABS(SC)) 17s 39y 39

C POINT FROM TWO - STEPS IS NOT BETTERe RESTORE INITIAL POINT
38 : PN(K)=PA(K)+DP (K)*SIGN(K)

39

4C

2C1
202

41
42
101

GO TO 35
SP=5C
DELTA=PM
DO 40 KA=1,N
PN(KA)=PC(KA)
IF(KR) 20252025201
CALL TOSS
NOS=1
GO TO 3
GO TO 23
WRITE (K65101)KsSIGN(K)
FORMAT (22H0 SIGN ERRORe VARIABLE 13,12H HAS SIGN OF F12.5)
CALL ERROR
STOP
END

"$IBFTC SHRIN LIST
C SHRINK

NN NNNN

—

220

500

30
981

SUBROUTINE SHRINK
COMMON/BBA/K6 KT

COMMON/BBB/LLLsLL2sLL3sLL4sLL59LLESLORSLGOSNGOSLE(20)sLTHKEY(20) s

2J1s11sNELSLMDSH,LIZ(20)
COMMON/BBE/ITRIAs ICODEsNCODSsNDECI » IBEST»IROUT
COMMON/BBG/LOCK (20)sPROB(20) sSPROB(20) sRNB(20) sLUT(20)

COMMON/BBH/NORVI(10C)sPN(1450)4PNMAX(100)sPNMIN(100) sBESV(100) s TEMP

2E(100)sPBESV(100)

COMMON/BBJ/KRsKR]1 9KR2 9KR3 sKR4yKR59KRE 9 KRT $KRB s KRIsKR109KR119KR12,

2KR139KR149KR159KR169KR17sKR18sKR19sKR20
COMMON/BBL/COUNTsLABOR
COMMON/BBM/N 9My NCs NTSNC s NTCoNSNIC
COMMGN/BBO/FMAX s PFMAX 9 SN
COMMON/BBQ/NTOSsMCYCLOyNTNCOS s SHRON
COMMON/BBR/NCY,NSE

CCMMON/BBS/KLMNsK1 yKRMN

COMMCON/BBZ/FEP14sTOLSTOLS
COMMON/BCB/NCY1sNIX1sIS1sNELL

DIMENSION PC(100)sPP(100)sPA(100)sDP(100)sSIGN(100)

THIS IS SHRINK RANDOM SEARCH

NTOS TESTS AT RANDOM

MCYCLO TOTAL NUMBER OF CYCLES

NTNCOS IS THE MAXIMUM NUMBER OF CYCLES ACCEPTED WITHOUT
ACCEPTABLE IMPROVEMENT (CONTINUOUSLY).

SHRON IS REDUCTION FACTOR FOR CPERATING SPACE

LOR=LCR

GO TO (1s+2)s LOR

WRITE (K6950)

FORMAT (36HO0 S HR I N X R AND OM IS CALLED)
LD=LE(2)

GO TO (200s244+23)s LD
LE(2)=2

COUNT=03,C

LABCR=D

LOR=2

NGO=1

NCY=0

NSE=0

FMAX=PFMAX

SP=FMAX

SC=FMAX

DO 500 MX=1,sN
BESV(MX)=PBESV(MX)
PN(MX)=BESV(MX)
PC(MX)=PNI(MX)
DP(MX)=PN{MX)
IF(LUT(ICODE)«GT40) GO TO 981
LUT(ICODE)=1
P=1.0/FLOAT(N)
VF=SHRON*#P

VFC=1.0/VF

DO 30 MX=1sN
SIGN(MX)=0e5%(PNMAX (MX)—-PNMIN(MX))
PA(MX)=PNMIN(MX)+SIGN{MX)
NCY=NCY+1

SHRINK OPERATING SPACE
VFC=VFC*VF

- ok .

C RUN NTOS TESTS AT RANDOM
982 NSE=NSE+l
c SELECT LEVELS FOR THE VARIABLES

DO 87 MX=1yN

100 X=RAMZ2B(0)
PP(MX)=VFC*SIGN(MX)*X
IF(0e5=X) 82982,83

82 PP(MX)==PP(MX)
83 PN(MX)=PA(MX)+PP (MX)
C CHeCK TO SEE THAT PN IS WITHIN OPERATING SPACE
IF(KR6) 214521,95
95 IF(KR7) 185184996
96 IF(PN(MX)-PNMAX({MX)) 18420420
18 IF(KRS) 215215657 :
97 IF(PNMIN{MX)—-PN(MX)) 2141519
19 PN(MX)=PNMIN(MX)
GO TO 21
2C PN{MX)=PNMAX{MX)
21 IF(KR11) 874873501

501 KRMN=1
CALL TESTCO

KLMN=K1
GO TO (875100)sKLMN
87 CONTINUE
RETURN
24 IF(SCeLT4SN) GO TO 856
C SC IS THE BEST RESULT SO FAR
91 SC=5N
FMAX=5C

DO 93 MX=1sN
PA(MX)=PN(MX)

93 BESV(KA)=PA(KA)
86 IF(KR17) 98+989600
600 CALL OUTPUT
98 IF(NTOS.GENSE) GO TO 982
NSE=0
IF(SC-SP+TOL*ABS(SP)) 17917422
17 SP=5C
FMAX=SP
LABOR=0

DO 17C KA=1sN
PC(KA)=PA(KA)
170 BESV(KA)Y=PC(KA)
COUNT=COUNT+1,0
IF(KR4) 120451204601
601 CALL OQUTPUT
GO 70 120
22 LABOR=LABOR+1
IF(NTNCOS.LT«LABOR) GO TO 23
125 COUNT=COUNT+1,.,0
IF(KR4) 12041205126
126 CALL OQUTPUT
120 IF(MCYCLO«GESNCY) GO TO 981
23 NGO=2
NCY1=NCY
NCY=0
NSE=0
LE(2)=3
IF(KR10) 25926927

25
26
27

LL3=2

CALL OUTPUT
RETURN

END

- 95 -

~SIBFTC SAT LIST
C SATTER

N"NONNN

13
14

60

185
25

95
56

SUBROUTINE SATTER

COMMCN/BRBA/K64KT
COMMON/BBB/LLYIsLL2sLL3sLL4sLLSsLLEILORSILGOSNGOSILE(20)sLTsKEY(20)
2J1s 11 oNELSLMDSHLIZ(20)

COMMON/BBH/NORVI (100} sPN(100)sPNMAX(100) sPNMIN(100)sBESV(100) s TEMP
2E(100)sPBESV(100)
COMMON/BBJ/KR9yKR19KR2 9KR3yKR4 ¢KRE 9 KRE9KRT7 3 KR8 sKRGsKR109sKR119KR12 s
2KR139yKR149KR153KR169sKR17sKR189sKR199KR20

COMMON/8BL /COUNT ,L AROR

COMMON/BBM/N sMyNC s NTSNCosNTCsNSNIC

COMMON/8BO/FMAX sPFMAX s SN

COMMON/BBS/KLMNsK1 sKRMN

COMMON/BBT/MRDTNsNDTNsNTISSTEP

CCMMON/BBU/MCYSeNI X

COMMON/BBZ/EP1+sTOLsTOLS

COMMON/BCB/NCY1sNIX1s1S1sNEL]

DIMENSION PC(100)sPP(100)sPA(100)sDP(100)sSIGN(100)

THIS 1S SUBROUTINE USING SATTERTHWAITE STRATEGY

MRDTN RANDOM CHANGES IN DIRFCTION

NDTN MAXIMUM NUMBER OF CHANGES IN DIRECTION ACCEPTED WITHOUT
IMPROVEMENT (CONTINUOUSLY),

NTIS IS THE TOTAL NUMBER OF EXPERIMENTS TO BE PERFORMED

STEP IS THE FACTOR FOR STEP SIZE

LOR=LOR

GO TO (1+2)s LOR

WRITE(K6450)

FORMAT (34H0 SATTERTHWAITE STRATEGY IS CALLED)
LB=LE(3)

GO TO (60095951+5241000) LB
COUNT=04,0

MCYS=0

NIX=0

NGO=1

LOR=2

LABOR=0

FMAX=PFMAX

SP=FMAX

SC=FMAX

DO 3 MX=1sN

BESV(MX)=PBESV(MX)
PN(MX)=BESV(MX)

PC{MX)=PN({MX)

TAKE A RANDOM STEP AND RUN A TEST
COUNT=COUNT+1.,0 -

MCYS=MCYS+1

LE(3)=2

DO 10 MX=1sN

X=RAMZ2B(0)

DP(MX)=STEP *x*¥(PNMAX{MX)=PNMIN(MX))
IF(0e5=X) 15415425

DP({MX)==DP{MX)

PN (MX)=PC{MX)+DP (MX)

CHECK FOR OUT OF BOUNDS AND SIDE CONDITIONS
IF(KR6) 21921495

IF(KR7) 18418496
IF(PN(MX)—PNMAX(MX)) 1842020

-97 -

18 IF(KR9) 21421597
97 IF(PNMIN(MX)=PN(MX)) 21,1919
19 PN(MX)=PNMIN(MX)

GO TO 21
20 PN({MX)=PNMAX(MX)
21 IF(KR11l) 10+10+53
53 KRMN=1

CALL TESTCO

KLMN=K1

GO TO (10+60) sKLMN
10 CONTINUE

RETURN

5 NIX=NIX+1

LE(3)=3

IF(KR17) 30430,31
31 CALL OQUTRUT

C IS THZ LAST EVALUATION BETTER THAN THE PREVIOUS ONE
30 IF(SC-SN) 40,300,3C0

C LAST EVALUATION IS NOT BETTER THAN PREVIOUS ONE

4C IF(NTIS«LTNIX) GO TO 1000

C TRY THE OPPOSITE DIRECTION

41 DO 21C MX=1sN
DP(MX)==DP {MX)
PNI{MX)=PC(MX)+DP (MX)
C ARE WE STILL WITHIN ROUNDS AND SIDE CONDITIONS
IF(KR6) 22192214295
295 IF(KR7) 21842184296
296 IF(PN(MX)=PNMAX(MX)) 21892215220
218 IF(KR9) 22192215297
297 IF{PNMIN(MX)=PN(MX)) 22192215219
219 PN(MX)=PNMIN(MX)+{(PNMIN(MX)=PN(MX))
GO TO 221
220 PN(MX)=PNMAX(MX)-{PN(MX)—PNMAX{MX))
221 IF(KR1l) 2102104253
253 KRMN=1
CALL TESTCO
KLMN=K1
GO TO (210+13)s KLMN
210 CONTINUE
RETURN
51 NIX=NIX+1
LE(3)y=4
IF(KR17) 2309230+231
231 CALL OQUTPUT
C 15 THIS EVALUATION SETTER THAN THE PREVIOUS ONE
230 IF(SCeGE«SN) GO TO 300
290 IFINTISSLTNIX) GO TO 1000
260 IF(MRDTN.LT.MCYS) GO TO 1000
270 IF(SC-SP+TOL*ABS(SP)) 21792179222

217 SP=5C
FMAX=SP
DO 57 KA=1sN
57 BESV(KA)=PN(KA)
LABOR=C

COUNT=COUNT+1.0
IF(KR4) 144144233
233 CALL OUTPUT
GO TO 14
222 LABOR=LABOR+1
IF(NDTN.LT.LABOR) GO TO 1000

225

226

300

395
396
318
397
319

320
321
302

350
52

341
340

362
1000

1006
1010
1011

COUNT=COUNT+1.0

IF(KR4) 1449144226

CALL OUTPUT

GO TO 14

THE EVALUATION IS BETTER. TRY ANOTHER STEP IN THE SAME
THE STEP SIZE IS THF SAME AS BEFORE,
SC=5N

FMAX=SC

DO 350 MX=1,sN

PC(MX)=PN(MX)

BESV{MX)=PN(MX)
PN(MX)=PC(MX)+DP (MX)

ARE WE STILL WITHIN BOUNDS AND SIDE CONDITIONS
IF{KR6) 321+321,395

IF(KR7) 31843185396
IF(PN(MX)~-PNMAX(MX)) 31893215320
IF(KR9) 32193214397
IF(PNMIN(MX)=PNIMX)) 32193219319
PN(MX)=PNMIN(MX)+ (PNMIN(MX)=PN(MX))
GO TO 321

PN(MX)=PNMAX (MX}=(PN{MX)-PNMAX (MX}))
IF(KR11) 35093504302

KRMN=1

CALL TESTCO

KLMN=K1

GO TO (350513), KLMN

CONTINUE

RETURN

NIX=NIX+1

IF(KR17) 3404340341

CALL OUTPUT

IS THE EVALUATION BETTER THAN THE PREVIOUS ONE
IF(SNeGT«SC) GO TO 290
IF(NTISeGESNIX) GO TO 300

NGO=2

MCYS=0

NIX1=NIX

NIX=C

LE(3)=5

IF(KR10) 1006101051011

LL3=2

CALL OUTPUT

RETURN

END

DIRECTION,

$IBFTC RANDO LIST

aNaRaNa KA

—

6C0O

300
240
250

100

95
96
18
97
19

20
21

SUBROUTINE RANDOM

COMMON/BBA/K64K7
COMMON/BBB/LL1sLL2sLL3sLL4sLL59yLLESLORSLGOINGOSLE(20) sLTsKEY(20) s
2JL1s T1oNELSLMDSsLIZ(20)
COMMON/BBH/NORVI(100) sPN(100) s PNMAX(100)sPNMIN(100)sBESV(100)sTEMP
2E(100)sPBESV(100) '
COMMON/BBJ/KRyKR1 sKR2 9KR33KR4 9 KR59KRE9sKR7 9KRBsKRG9KR10sKR119KR12s
2KR139KR149KR159KR169KR173KR18sKR19sKR20

COMMON/BRBL/COUNT s LABOR

COMMON/BBM/NsMyNCoNTSNCoNTCeNSNIC

COMMON/BBO/FMAX s PFMAX s SN

COMMON/RBBS /KLMNsK1 ¢ KRMN

COMMON/BBV/MCYCLESNTESsNTNCYS

COMMON/BRW/1S,MI

COMMON/BBZ/EP1,TOLsTOLS

COMMON/BCB/NCY1sNIX1sIS1eNELL

DIMENSION PC(100)sPP(100)sPA(100)sDP(100)sSIGN(100)

THIS IS SIMPLE RANDOM SEARCH

MCYCLE IS THE TOTAL NUMBER OF CYCLES

NTES IS THE TOTAL NUMBER OF TESTS PER CYCLE
NTNCYS IS THE MAXIMUM NUMBER OF CYCLES

WITHOUT ACCEPTABLE IMPROVEMENT (CONTINUOUSLY).

LOR=LOR

GO TO (1+2)s LOR

WRITE (K6s50)

FORMAT (23HO R A N D O M IS CALLED)
LC=LE(])

GO TO (600+51+23)s LC

LE(1)=2

COUNT=0,0

LABOR=0

LOR=2

NGO=1

1s=0

MI=0

FMAX=PFMAX

SP=FMAX

SC=FMAX

DO 300 MX=1,N
BESV(MX)=PBESV(MX)
PN{MX)=BESV(MX)

PA(MX)Y=PN{MX)

PCI{MX)=PN(MX)

15=15+1

MI=MI+1

DO 500 MX=1,N

X=RAM2B(0)
PN(MX)=X%(PNMAX(MX)=PNMIN(MX))+PNMIN(MX)
IF(KR6) 21921495

IF(KR7) 18,418,496
IF(PN(MX)-PNMAX(MX}) 18,20,20
IF(KRS) 214921497
IF(PNMIN(MX)=PN(MX)) 21+19,19
PN(MX)=PNMIN (MX)

GO TO 21

PN(MX)=PNMAX (MX)

IF(KR11l) 5005005501

501

500

51
190

191
220
225
200

17

170

702
22

125
126

210
23

25
26
27

KRMN=1

CALL TESTCO

KLMN=K1

GO TO (500+100) 4KLMN
CONTINUE

RETURN

IF(SNeGT«SC) GO TO 220
5C=5SN

FMAX=SC

DO 191 KA=1,N
PC(KA)=PN(KA)
BESVI(KA)=PC(KA)
IF(KR17) 20092005225
CALL OUTPUT
IFINTES<GE«MI} GO TO 250
MI=0

-lw-

IF(SC-SP+TOL*¥ABS(SP)) 17517422

SP=SC

FMAX=SP

LABOR=0

DO 170 KA=1sN
PA(KA)=PC(KA)
BESV(KA)=PA(KA)
COUNT=COUNT+1.0
IF(KR4) 210452104702
CALL OuTPUT

GO TO 210
LABOR=LABOR+1

IFINTNCYSeLT<«LABOR) GO TO 23

COUNT=CCOUNT+140
IF(KR&4) 21052102126
CALL OUTPUT

IF(MCYCLEWSGESIS) GO TO 240

NGO=2

151=1S

15=0

MI=0

LE(1)=3

IFIKR10) 25426427
LL3=2

CALL OUTPUT
RETURN

END

$IBMAP RIEL
* RANDON NUMBERS UNIFORMLY DISTRIBUTED BETWEEN 0. AND +1.0
REM RAM2eeees UNIFORMLY DISTRIBUTED RANDOM NUMBERS

RAM2A

STORE

RAMZ28B

" RAMZ2C

RAMZ2D

FRAM
PF5

ONE

REM
ENTRY
ENTRY
ENTRY
ENTRY
SAVE
CLA

COM

ADD ONE
PAX Cs1
CLA 01

ANA MASK

TZE %*+3
CLA 0»1

LIST

RAM2A
RAM28
RAM2C
RAM2D
1s4
394

TRA STORE

CLA 0,1
LRS 15
ADD 1,1
LRS 15
ADD 241
LLS 12

STO FRAM

RETURN
SAVE

RAM2A

LDQ
MPY
STQ
CLA
ARS
ADD
FAD

FRAM
PF5
FRAM
FRAM

8
FRAM+2
FRAM+2

RETURN RAMZB

SAVE

CLA
CcoM
ADD
PAX
STz
STZ
STZ
CLA
LRS
STD
LLS
STD
LLS
STD
TOV

144
394

ONE
O0s1
291
1,1
01l
FRAM
12
291
15
1,1
1%
Os1
*42

RETURN RAM2C

SAVE

CLA

RETURN RAM2D
DEC 34359738367
DEC 30517578125
OCT 200000000000

PZE

FRAM

1

- 101 -

2 COMP. OF LOCATION OF LAST FIVE
DIGITS OF INPUT RANDOM NUMBER

RANDOM NUMBER

MULTIPLY PREVIOUS RANDOM NUMBER
BY 15TH POWER OF 5

CONVERT TO FLOATING POINT

2 COMP., OF LOCATION OF LAST FIVE
DIGITS OF INPUT RANDOM NUMBER

ORIGINAL RANDOM NUMBER
15TH POWER OF 5

- 102 -

MASK oCT 77777
END

$DATA
0 *% THIS IS RUN NUMBER * 048 * OF G R O P E
O ¥ F ORTR AN Iv
0O $% REFERENCE LIST OF SUBROUTINES USED IN THE PROGRAM
0 *% 08/03/64 MAIN GROPE 066
O *% 08/703/64 RSDTA GROPE 066
C *% 08/03/64 IDECI GROPE 066
O **¥ 08/03/64 OPTIMU GROPE 266
O #% 08/03/64 DECIS GROPE 066
0 ** 08/03/64 RCPRO GRCPE 066
0 ** 08/03/64 ADAPT GROPE 066
C ** 08/03/64 OUTPUT GROPE 066
O #% 08/03/64 LOOK GROPE 066
O *% 08/03/64 SHRINK GROPE 664
O ** 08/03/66 SATTER GROPE 066
C %% 08/03/64 RANDCM GROPE 066
O *% 08/03/64 EVALT GROPE 066
0 ** 08/03/64 RWSUB GROPE 066
O *%¥ 08/03/64 RFMTS, LPRMT GRCPE 066
0 ** 08/03/64 TOSS GROPE 066
C ** 08/03/64 SNICONs SYSTEMs ERROR GROPE 066
O %% 08/03/64 CLOCK, TESTCO GROPE 066
0 ** 08/03/64 RAM2 (RAM2A,RAM2B,RAM2C) GROPE 066
1 $% END OF LIST OF SUBROUTINES END REFERENCES
61 o0 ¢ ¢6~-11 01 1=-1 0 1-1 0 1 1 0 O 1 1

(1HOs43Xs38H SOLUTION OF SHELL DEVELOPMENT PROBLEM)

(BF6e2/8F6e2)

{1HC+50X929H THE INPUT PROBLEM LOOKS LIKE)
(1HO 9 48X 9 32H 3369 33636 36 33 3 36 36 3 3 96 3 3 3 3 66 33 3 5 3 3 3 3 %3¢)

(1HC456Xs15H E V E
(1H
(1HCy56Xs15H C M A T R I X//)
(1HOs56X915H D V E C T O R//)
(1HC»52Xs25H B VECTOR AND A

C T O0RY/Y)

16 10 16 4 15

2 3 4 5 6 7 8 9 10 11 12 13 14
4C0 1300 ¢ 1 1 1 1 1 2 1 1

1,000C00E-C6 1e4000000E~04 0,000000E+0C1
499136186304718592
499136186304718592

MATRIX//)

C+100C0CE+T]
040NOOCOE+N1]
0+4000C0CE+D1
C«0C0000E+O1
Ce30C000E+01
0«3200000E+C1
0e3CC0C0E+C1
0e300C00E+D1
0.00000CE+CT1
CeDNDO00E+Q1
0e00000CE+C]
0.000000E+O1
4

80 25 5

N04000C00E+C]
Ne200000CE+C1
De 2NOONJE+N]

Ce300000E+01
Ne300000e+01
De3000C0E+D1

NeOC0000F+01
DeNONONOE+N]
D« CO0ND00E+D]

D«CNONCO0E+D]
0.000N00E+01
D4NOCO00E+01L

0.300000E+01
0«300000..012
0«3000C0E+C1

0.,000000E+N1
0.000000E+01
D.00CO00E+D1

15 16 1

NeNDNOONE+DL
Ce000000E+01
NDeONNO0OE+N]

06300000L+01
0.,20000C -01
06300000+01

04000000F+01
0e00NOO0OE+01
0.00CCCOE+O1

942X 9F B e294XsF6e292X9F60292X3F6e292X9F6e292X9F6e2)

0.000000E401
0+000000E+01
0e000000E+01

0300000401
0.300000.-01
0«30000C0E+01

0,000000E+01
0.00000CE+01
0.0C0ON00E+01

40 50 5 ,080000E+01

50800 5 N,C50000E+01

04C250C00E+01 0e050000E5+01 34000C00E-03 04.200000E+01 0.100000E+01
CeOl000CE+D1 04010000E+01 04200000E+01 1.000000F-04 04100000E401
1.00C0C0E-0C4

0e025C00E+0]1 04025000E+01 04025000E+01 0.025000E+01
0e099140E+01 04C54230E+01 04037710E+4+01 0,076750E+01 0.010090E+01
06C75630E+01

4Ce00=16e0C 2670 2600 170 0400 =14C0 0,00
DeD0 CaNC NeDD CelN Nel0 0400 0Ne0ON Na0O
ZCCO 0900 ‘2000 0.00 0040 2.00 OQOO —1.00
D600 ColZ De0D 0e00 DNe0CZ Co00 04080 2,00
Ce25 =3450 0De30 2600 0670 0400 0608 0ColD

=1e¢00 04020 0e00 GedD 000 NeC0 0600 0600
4.00 OOOO ‘2.00 0«00 '4.00 ‘1000 OOOO 0.00
Cel00 =100 Col0 (L0 0630 2¢20 0CeD0 0400
QQCO 0.00 ‘9000 ‘2.00 1.00 -2080 OOOO 0.00
DsCC 0e0C =1a00 Ce™ 0 Ne20C Ne0D 0600 Nel0
100 207 CoaO0 =84470 0400 Ne00 0400 0400
Ce00 DeNT 0DeD0 =120 Ded0 0400 0,00 D400

40600 =100 =100 =1e00 —1400 =100 Ce00 0400
CeOC Oe00 0DeB0 000 =10 000 0400 0600

60400 =140C =2400 =3400 =200 -1400 0C0 02.00
O.CO 0.0C 0.00 0.0 0e0C —l.OO 0.00 DeCO

—54C0 1400 2400 32400 4,400 ¢CO DeCD NLCO
CelOC Dl DaCl NeDNZ 070 Ne0C =100 0eCO

—1eCC 1,00 1,00 eCD 100 1400 0400 0,00
DeCC CelCl DNel0 Cel0 0aNC a0 De0N —1400
O0eD0 Cel0 CelO CelO 0600 0400 0400 Co00
Oe0C CelO 0e00 CeCO CaNC D0eOC 0600 0600
0.00 B0.00-ZO.CO—I0.00 32.00‘10.00 0.00 0.00
D600 CoD0 DelC 0400 0eC0 Ne20 Ce0C 000
0eC0=20400 39400 ~6e00=314N0 32,00 0e0C 0400
DeC0 Ve0C Dl DeCO CglC De00 04,00 0,00
De00=106010 =6e0N 10400 =6600-10e00 0600 02N
CeCO 000 D600 D470 0427 0400 0400 0400
O.OO 32000‘31.00 ‘6.00 39000‘20.00 Ne0O0C OOOO
CeO0 0al2 0eCO0 0Ce00 0e00 CelC 0CeOC 0a4CO
0000‘10000 BZQOO—IOoOO_ZOQOO 30.00 000 0.00
DeCO 040C De00 0600 0400 0,00 0,00 0,00
0e00=15400=27e00-36600-18.00-12400 000 000
0eCO CoafD 00N Ne00 NeNC N0 DeCO NeCH
De00 4400 8400 10470 6400 24C0 06CO 0,00
De0 Ca07 NalO 0CelO CaOC 0400 0,00 7,00

APPERDIX E

OVERLAYING STRUCTURES

- 106 -

T °"ON 2andtTg

o = B =
w.u: e e PN
B yoo1 ¢ wmnivs |B smrums _,m WOQNVY
(0] 3 ()Y
_] N
_ LVITIA, NIDTHO
SSOL
0DISAL
[
3 ITYAT
7 I0dINO
STOAa
AT IO

£ 0¥dod
—m IDHdI

TINHd'T

‘ ; - NODINS
3 _ ,¥I13d, NIDI¥O _m gansmy
m b SIAS
v IVaY vIasy
| |
_ , VHA'TY,, NIDINO
RO
e S00T0
x
© WAISXS
NIVW

u ¥y THNLONYLS

- 107 -

=

[N
Wv@OQ

(o)

L

o
e

WJHEP<W

|

.

2 ‘ON 2aItdg

- £
Fanrans |F woawva

|

___ VITHA, NIOTHO

SSO&L
ODLSHEL
LTVAT
dNLIL00
SIoHEd
NWTIJO
0y¥ady
jReciens
LINAT
IdVAY

NODINS

T UTT

HNSMY
SINIT

vIasy

_

W VHATY, NIDIHO

HOWME
._H MDOID
B anvy
(@]
WAISAS

NIV

oy, DENLONYIS

- 108 -

€ ‘ON aanITJ

)
e

m‘mszmm
n

£
e
W.anz<m
=

| .vaTag, NISTHO

JINHAT
IAVaV
NODINS
gNSMy
STNTY
VIasy
JOHHH
AD0ID
CNVY
WALSAS
NIV

0 3uT]

uidy HHNEINYLS

4 *ON aIndTg

szagmg 2qudang/qndur

- 109 -

8881019
aIx0)
pasnupn
L Yutrg 289BI03g SI0) pesnup
9 Jutr]
g Murj
¢ Yurl
P .- _ i
£ YUl B
T SUTT
¢ Juw]
NOWWOD NVHIYOA \LJ
ssutrqnoxqng AIexqrl
0 Yutg
~ |
go0I Burpniour ‘waisfg . L

HIVHOLS HYO0D O JANDISSY
T°ON HHUNOIAL NI HUALOAHLS AVINHAO

